Symmetries of differential equations. IV
Loading...
Download
Official URL
Full text at PDC
Publication date
1983
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citation
Abstract
By an application of the geometrical techniques of Lie, Cohen, and Dickson it is shown that a system of differential equations of the form [x^(r_i)]_i = F_i(where r_i > 1 for every i = 1 , ... ,n) cannot admit an infinite number of pointlike symmetry vectors. When r_i = r for every i = 1, ... ,n, upper bounds have been computed for the maximum number of independent symmetry vectors that these systems can possess: The upper bounds are given by 2n_ 2 + nr + 2 (when r> 2), and by 2n_2 + 4n + 2 (when r = 2). The group of symmetries of ͞x^r = ͞0 (r> 1) has also been computed, and the result obtained shows that when n > 1 and r> 2 the number of independent symmetries of these equations does not attain the upper bound 2n _2 + nr + 2, which is a common bound for all systems of differential equations of the form ͞x^r = F[t, ͞x, ... , ͞x^(r - 1 )] when r> 2. On the other hand, when r = 2 the first upper bound obtained has been reduced to the value n^2 + 4n + 3; this number is equal to the number of independent symmetry vectors of the system ͞x= ͞0, and is also a common bound for all systems of the form ͞x = ͞F (t ,͞x, ‾̇x).
Description
©1983 American Institute of Physics.
It is a pleasure to express our gratitude to Dr. C. Ruiz and Dr. M. Amores for useful discussions with them and for providing some bibliography. It is also a pleasure to acknowledge the constant encouragement given by M. C. Hidalgo-Brinquis.