Intermediate band mobility in heavily titanium-doped silicon layers

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.date.accessioned2023-06-20T03:41:13Z
dc.date.available2023-06-20T03:41:13Z
dc.date.issued2009-09
dc.description© 2009 Elsevier B.V. All rights reserved. This work has been supported by the project IBPOWER, funded by the European Commission under Contract no .211640, by the Regional Government of Madrid with in the project NUMANCIA (S-0505/ENE/000310) and by the Spanish National Research Program with in the project GENESIS-FV (CSD2006-0004).
dc.description.abstractThe sheet resistance and the Hall mobility of high-purity Si wafers, in whose surface Ti atoms are implanted and laser annealed reaching concentrations above 10(21) cm(-3), are measured in the 90-370 K range. Below 240 K, an unconventional behavior is observed that is well explained on the basis of the appearance of ail intermediate band (IB) region able to form a blocking junction with the substrate and of the appearance of an IB conduction. Explanations based on ordinary device physics fail to justify all the unconventional behavior of the characteristics observed.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipRegional Government of Madrid
dc.description.sponsorshipSpanish National Research Program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25892
dc.identifier.doi10.1016/j.solmat.2009.05.014
dc.identifier.issn0927-0248
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.solmat.2009.05.014
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44246
dc.issue.number9
dc.journal.titleSolar Energy Materials and Solar Cells
dc.language.isoeng
dc.page.final1673
dc.page.initial1668
dc.publisherElsevier Science BV
dc.relation.projectIDProject IBPOWER-211640
dc.relation.projectIDProject NUMANCIA-(S-0505/ENE/000310)
dc.relation.projectIDProject GENESIS-FV-CSD2006-0004
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSolar-Cells
dc.subject.keywordEnergy-Conversion
dc.subject.keywordEfficiency
dc.subject.keywordRecombination
dc.subject.keywordIonization
dc.subject.keywordIron.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleIntermediate band mobility in heavily titanium-doped silicon layers
dc.typejournal article
dc.volume.number93
dcterms.references[1] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells, Journal of Applied Physics 32, (1961) 510–519. [2] G.L. Araujo, A. Martí, Absolute limiting efficiencies for photovoltaic energy conversion, Solar Energy Materials and Solar Cells 33, (1994) 213–240. [3] A. Luque, A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Physical Review Letters 78, (1997) 5014–5017. [4] A. Luque, A. Martí, A metallic intermediate band high efficiency solar cell,Progress in Photovoltaics: Research and Applications 9, (2001) 73–86. [5] A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, A. Mc-Kee, General equivalent circuit for intermediate band devices: potentials, currents and electroluminescence, Journal of Applied Physics 96, (2004)903–909. [6] S.M. Hubbard, C.D. Cress, C.G. Bailey, R.P. Raffaelle, S.G. Bailey, D.M. Wilt, Effect of strain compensation on quantum dot enhanced GaAs solar cells, Applied Physics Letters 92, (2008) 123512-3. [7] M.Y. Levy, C. Honsberg, Nanostructured absorbers for multiple transition solar cells, IEEE Transactions on Electron Devices 55, (2008) 706–711. [8] Q. Shao, A.A. Balandin, A.I. Fedoseyev, M. Turowski, Intermediate-band solar cells based on quantum dot supracrystals, Applied Physics Letters 91, (2007) 163503-3. [9] G.D. Wei, K.T. Shiu, N.C. Giebink, S.R. Forrest, Thermodynamic limits of quantum photovoltaic cell efficiency, Applied Physics Letters 91, (2007) 223507–223513. [10] A. Martí, L. Cuadra, A. Luque, Partial filling of a quantum dot intermediate band for solar cells, IEEE Transactions on Electron Devices 48, (2001) 2394–2399. [11] G. Wei, S.R. Forrest, Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier, Nano Letters 7, (2007) 218–222. [12] R. Oshima, A. Takata, Y. Okada, Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells, Applied Physics Letters 93, (2008) 083111-3. [13] A. Martí, E. Antolín, C.R. Stanley, C.D. Farmer, N. López, P. Díaz, E. Cánovas, P.G. Linares, A. Luque, Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell, Physical Review Letters 97, (2006) 247701–247704. [14]A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L.J. Caballero, L. Cuadra, J.L. Balenzategui, Experimental analysis of thequasi-Fermi level split in quantum dot intermediate-band solar cells, Applied Physics Letters 87, (2005) 083503–083505. [15] A. Luque, A. Martí, E. Antolín, C. Tablero, Intermediate bands versus levels in non-radiative recombination, Physica B 382, (2006)320–327. [16] W. Shockley, W.T. Read, Statistics of the recombination of holes and electrons, Physical Review 87, (1952) 835–842. [17] R.N. Hall, Electron–hole recombination in germanium, Physical Review 87, (1952) 387. [18] P. Wahnón, C. Tablero, Ab-initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials, Physical Review B 65, (2002) 1–10. [19] P. Palacios, J.J. Fernández, K. Sánchez, J.C. Conesa, P. Wahnón, First-principles investigation of isolated band formation in half-metallic Ti[sub x]Ga[sub 1-x]P(x = 0.3125-0.25), Physical Review B(Condensed Matter and Materials Physics) 73, (2006) 085206–085208. [20] P. Palacios, K. Sánchez, J.C. Conesa, J.J. Fernández, P. Wahnón, Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds, Thin Solid Films 515, (2007) 6280–6284. [21] A. Martí, D. Fuertes-Marron, A. Luque, Evaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials, Journal of Applied Physics 103, (2008) 073706-6. [22] A. Rohatgi, J.R. Davis, R.H. Hopkins, P. Raichoudhury, P.G. McMullin, J.R. McCormick, Effect of titanium, copper and iron on silicon solar-cells, Solid-State Electronics 23, (1980) 415–419. [23] J.W. Chen, A.G. Milnes, A. Rohatgi, Titanium in silicon as a deep level impurity, Solid-State Electronics 22, (1979) 801–808. [24] A.C. Wang, C.T. Sah, Complete Electrical characterization of recombination properties of titanium in silicon, Journal of Applied Physics 56, (1984) 1021–1031. [25] D. Mathiot, S. Hocine, Titanium-related deep levels in silicon: a reexamination, Journal of Applied Physics 66, (1989) 5862–5867. [26] M. Okuyama, N. Matsunaga, J.-W. Chen, A.G. Milnes, Photoionization cross-sections and energy levels of gold, iron, platinum, silver, and titanium in silicon, Journal of Electronic Materials 8, (1979) 501–515. [27] L. Tilly, H.G. Grimmeiss, H. Pettersson, K. Schmalz, K. Tittelbach, H. Kerkow, Electrical and optical properties of titanium-related centers in silicon, Physical Review B43, (1991) 9171–9177. [28] J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, I. Mártil, Titanium doped silicon layers with very high concentration, Journal of Applied Physics 104, (2008) 016103–016105. [29] C.W. White, S.R. Wilson, B.R. Appleton, F.W. Young Jr., Supersaturated substitutional alloys formed by ion implantation and pulsed laser an nealing of group-III and group-V dopants in silicon, Journal of Applied Physics 51, (1980)738–749. [30] K.M. Yu, W. Walukiewicz, J. Wu, W. Shan, J.W. Beeman, M.A. Scarpulla, O.D. Dubon, P. Becla, Diluted II–VI oxide semiconductors with multiple band gaps, Physical Review Letters 91, (2003) 246403–246404. [31]K.W. Boer, Survey of Semiconductor Physics, Van Nostrand Reinhold, New York, 1990, pp.792–797. [32] R.L. Petritz, Theory of an experiment for measuring the mobility and density of carriers in the space–charge region of a semiconductor surface, Physical Review 110, (1958) 1254–1262. [33] ATLAS, Device simulator framework distributed by Silvaco Data Systems Inc., 4701 Patrick Henry Drive, Bldg#6, Santa Clara, CA. [34] G.J. Conibeer, C.W. Jiang, D. König, S. Shrestha, T. Walsh, M.A. Green, Selective energy contacts for hot carrier solar cells, Thin Solid Films 516, (2008) 6968–6973. [35] P. Wurfel, Solar energy conversion with hot electrons from impact ionisation, Solar Energy Materials and Solar Cells 46, (1997) 43–52.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,20.pdf
Size:
300.95 KB
Format:
Adobe Portable Document Format

Collections