Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

K3 double structures on Enriques surfaces and their smoothings

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science B.V. (North-Holland)
Citations
Google Scholar

Citation

Abstract

Let Y be a smooth Enriques surface. A K3 carpet on Y is a double structure on Y with the same invariants as a smooth K3 surface (i.e., regular and with trivial canonical sheaf). The surface Y possesses an etale K3 double cover X ->(pi) over barY. We prove that pi can be deformed to a family X -> P-T*(N) of projective embeddings of K3 surfaces and that any projective K3 carpet on Y arises from such a family as the flat limit of smooth, embedded K3 surfaces.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections