The Poincaré–Birkhoff Theorem for a Class of Degenerate Planar Hamiltonian Systems
Loading...
Official URL
Full text at PDC
Publication date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
De Gruyter
Citation
Abstract
In this paper, we investigate the problem of the existence and multiplicity of periodic solutions to the planar Hamiltonian system x' = −λα(t)f (y), y' = λβ(t)g(x), where α, β are non-negative T-periodic coefficients and λ > 0. We focus our study to the so-called “degenerate” situation, namely when the set Z := supp α ∩ supp β has Lebesgue measure zero. It is known that, in this case, for some choices of α and β, no nontrivial T-periodic solution exists. On the opposite, we show that, depending of some geometric configurations of α and β, the existence of a large number of T-periodic solutions (aswell as subharmonic solutions) is guaranteed (for λ > 0 and large). Our proof is based on the Poincaré–Birkhoff twist theorem. Applications are given to Volterra’s predator-prey model with seasonal effects.