Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Poincaré–Birkhoff Theorem for a Class of Degenerate Planar Hamiltonian Systems

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

De Gruyter
Citations
Google Scholar

Citation

Abstract

In this paper, we investigate the problem of the existence and multiplicity of periodic solutions to the planar Hamiltonian system x' = −λα(t)f (y), y' = λβ(t)g(x), where α, β are non-negative T-periodic coefficients and λ > 0. We focus our study to the so-called “degenerate” situation, namely when the set Z := supp α ∩ supp β has Lebesgue measure zero. It is known that, in this case, for some choices of α and β, no nontrivial T-periodic solution exists. On the opposite, we show that, depending of some geometric configurations of α and β, the existence of a large number of T-periodic solutions (aswell as subharmonic solutions) is guaranteed (for λ > 0 and large). Our proof is based on the Poincaré–Birkhoff twist theorem. Applications are given to Volterra’s predator-prey model with seasonal effects.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections