Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Learning a local symmetry with neural networks

Loading...
Thumbnail Image

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

We explore the capacity of neural networks to detect a symmetry with complex local and non-local patterns: the gauge symmetry Z(2). This symmetry is present in physical problems from topological transitions to quantum chromodynamics, and controls the computational hardness of instances of spin-glasses. Here, we show how to design a neural network, and a dataset, able to learn this symmetry and to find compressed latent representations of the gauge orbits. Our method pays special attention to system-wrapping loops, the so-called Polyakov loops, known to be particularly relevant for computational complexity.

Research Projects

Organizational Units

Journal Issue

Description

©2019 American Physical Society. We thank L. A. Fernandez for encouraging discussions and Marco Baity-Jesi for his careful reading of the manuscript. This work was partially supported by Ministerio de Economia, Industria y Competitividad (MINECO) (Spain) and by EU's FEDER program through Grants No. FIS2015-65078-C2-1-P and No. PGC2018-094684-B-C21 and by the LabEx CALSIMLAB (public Grant No. ANR-11-LABX-0037-01 constituting a part of the "Investissements d'Avenir" program - reference No. ANR-11-IDEX-0004-02).

UCM subjects

Unesco subjects

Keywords

Collections