Learning a local symmetry with neural networks
dc.contributor.author | Decelle, Aurelien Fabrice | |
dc.contributor.author | Martín Mayor, Víctor | |
dc.contributor.author | Seoane Bartolomé, Beatriz | |
dc.date.accessioned | 2023-06-16T15:15:27Z | |
dc.date.available | 2023-06-16T15:15:27Z | |
dc.date.issued | 2019-11-06 | |
dc.description | ©2019 American Physical Society. We thank L. A. Fernandez for encouraging discussions and Marco Baity-Jesi for his careful reading of the manuscript. This work was partially supported by Ministerio de Economia, Industria y Competitividad (MINECO) (Spain) and by EU's FEDER program through Grants No. FIS2015-65078-C2-1-P and No. PGC2018-094684-B-C21 and by the LabEx CALSIMLAB (public Grant No. ANR-11-LABX-0037-01 constituting a part of the "Investissements d'Avenir" program - reference No. ANR-11-IDEX-0004-02). | |
dc.description.abstract | We explore the capacity of neural networks to detect a symmetry with complex local and non-local patterns: the gauge symmetry Z(2). This symmetry is present in physical problems from topological transitions to quantum chromodynamics, and controls the computational hardness of instances of spin-glasses. Here, we show how to design a neural network, and a dataset, able to learn this symmetry and to find compressed latent representations of the gauge orbits. Our method pays special attention to system-wrapping loops, the so-called Polyakov loops, known to be particularly relevant for computational complexity. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO)/FEDER | |
dc.description.sponsorship | LabEx CALSIMLAB | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/58091 | |
dc.identifier.doi | 10.1103/PhysRevE.100.050102 | |
dc.identifier.issn | 2470-0045 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevE.100.050102 | |
dc.identifier.relatedurl | https://journals.aps.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/5980 | |
dc.issue.number | 5 | |
dc.journal.title | Physical review E | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | (FIS2015-65078-C2-1-P ; PGC2018-094684-B-C21) | |
dc.relation.projectID | ANR-11-LABX-0037-01/ ANR-11-IDEX-0004-02 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.keyword | Relaxation | |
dc.subject.ucm | Física (Física) | |
dc.subject.unesco | 22 Física | |
dc.title | Learning a local symmetry with neural networks | |
dc.type | journal article | |
dc.volume.number | 100 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 267aaefd-e7c6-4d91-bf47-9d098e652101 | |
relation.isAuthorOfPublication | 061118c0-eadf-4ee3-8897-2c9b65a6df66 | |
relation.isAuthorOfPublication | f870b5aa-1400-4c55-b6b9-53b8e7a68203 | |
relation.isAuthorOfPublication.latestForDiscovery | 061118c0-eadf-4ee3-8897-2c9b65a6df66 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- MartínMayorV Libre 59.pdf
- Size:
- 886.97 KB
- Format:
- Adobe Portable Document Format