Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Learning a local symmetry with neural networks

dc.contributor.authorDecelle, Aurelien Fabrice
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorSeoane Bartolomé, Beatriz
dc.date.accessioned2023-06-16T15:15:27Z
dc.date.available2023-06-16T15:15:27Z
dc.date.issued2019-11-06
dc.description©2019 American Physical Society. We thank L. A. Fernandez for encouraging discussions and Marco Baity-Jesi for his careful reading of the manuscript. This work was partially supported by Ministerio de Economia, Industria y Competitividad (MINECO) (Spain) and by EU's FEDER program through Grants No. FIS2015-65078-C2-1-P and No. PGC2018-094684-B-C21 and by the LabEx CALSIMLAB (public Grant No. ANR-11-LABX-0037-01 constituting a part of the "Investissements d'Avenir" program - reference No. ANR-11-IDEX-0004-02).
dc.description.abstractWe explore the capacity of neural networks to detect a symmetry with complex local and non-local patterns: the gauge symmetry Z(2). This symmetry is present in physical problems from topological transitions to quantum chromodynamics, and controls the computational hardness of instances of spin-glasses. Here, we show how to design a neural network, and a dataset, able to learn this symmetry and to find compressed latent representations of the gauge orbits. Our method pays special attention to system-wrapping loops, the so-called Polyakov loops, known to be particularly relevant for computational complexity.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipLabEx CALSIMLAB
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/58091
dc.identifier.doi10.1103/PhysRevE.100.050102
dc.identifier.issn2470-0045
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.100.050102
dc.identifier.relatedurlhttps://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/5980
dc.issue.number5
dc.journal.titlePhysical review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectID(FIS2015-65078-C2-1-P ; PGC2018-094684-B-C21)
dc.relation.projectIDANR-11-LABX-0037-01/ ANR-11-IDEX-0004-02
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordRelaxation
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleLearning a local symmetry with neural networks
dc.typejournal article
dc.volume.number100
dspace.entity.typePublication
relation.isAuthorOfPublication267aaefd-e7c6-4d91-bf47-9d098e652101
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublicationf870b5aa-1400-4c55-b6b9-53b8e7a68203
relation.isAuthorOfPublication.latestForDiscovery061118c0-eadf-4ee3-8897-2c9b65a6df66

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MartínMayorV Libre 59.pdf
Size:
886.97 KB
Format:
Adobe Portable Document Format

Collections