An extended class of orthogonal polynomials defined by a Sturm-Liouville problem
Loading...
Official URL
Full text at PDC
Publication date
2009
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
We present two infinite sequences of polynomial eigenfunctions of a Sturm-Liouville problem. As opposed to the classical orthogonal polynomial systems, these sequences start with a polynomial of degree one. We denote these polynomials as X(1)-Jacobi and X(1)-Laguerre and we prove that they are orthogonal with respect to a positive definite inner product defined over the compact interval [-1, 1] or the half-line [0, infinity), respectively, and they are a basis of the corresponding L(2) Hilbert spaces. Moreover, we prove a converse statement similar to Bochner's theorem for the classical orthogonal polynomial systems: if a self-adjoint second-order operator has a complete set of polynomial eigenfunctions {p(i)}(i=1)(infinity), then it must be either the X(1)-Jacobi or the X(1)-Laguerre Sturm-Liouville problem. A Rodrigues-type formula can be derived for both of the X(1) polynomial sequences.
Description
© 2009 Elsevier Inc. All rights reserved.
We are grateful to Jorge Arvesú, Mourad Ismail, Francisco Marcellán and André Ronveaux for their helpful comments. A special note of thanks goes to Norrie Everitt for his suggestions and remarks regarding operator domains and the limit point/circle analysis, and to Lance Littlejohn for comments regarding classical polynomials with negative integer parameters. The research of DGU is supported in part by the Ramón y Cajal program of the Spanish ministry of Science and Technology and by the DGI under grants MTM2006-00478 and MTM2006-14603. The research of NK is supported in part by NSERC grant RGPIN 105490-2004. The research of RM is supported in part by NSERC grant RGPIN-228057-2004.