Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

An extended class of orthogonal polynomials defined by a Sturm-Liouville problem

dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorKamran, Niky
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-20T03:53:47Z
dc.date.available2023-06-20T03:53:47Z
dc.date.issued2009-11-01
dc.description© 2009 Elsevier Inc. All rights reserved. We are grateful to Jorge Arvesú, Mourad Ismail, Francisco Marcellán and André Ronveaux for their helpful comments. A special note of thanks goes to Norrie Everitt for his suggestions and remarks regarding operator domains and the limit point/circle analysis, and to Lance Littlejohn for comments regarding classical polynomials with negative integer parameters. The research of DGU is supported in part by the Ramón y Cajal program of the Spanish ministry of Science and Technology and by the DGI under grants MTM2006-00478 and MTM2006-14603. The research of NK is supported in part by NSERC grant RGPIN 105490-2004. The research of RM is supported in part by NSERC grant RGPIN-228057-2004.
dc.description.abstractWe present two infinite sequences of polynomial eigenfunctions of a Sturm-Liouville problem. As opposed to the classical orthogonal polynomial systems, these sequences start with a polynomial of degree one. We denote these polynomials as X(1)-Jacobi and X(1)-Laguerre and we prove that they are orthogonal with respect to a positive definite inner product defined over the compact interval [-1, 1] or the half-line [0, infinity), respectively, and they are a basis of the corresponding L(2) Hilbert spaces. Moreover, we prove a converse statement similar to Bochner's theorem for the classical orthogonal polynomial systems: if a self-adjoint second-order operator has a complete set of polynomial eigenfunctions {p(i)}(i=1)(infinity), then it must be either the X(1)-Jacobi or the X(1)-Laguerre Sturm-Liouville problem. A Rodrigues-type formula can be derived for both of the X(1) polynomial sequences.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish ministry of Science and Technology. Ramón y Cajal program
dc.description.sponsorshipDGI
dc.description.sponsorshipNSERC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30809
dc.identifier.doi10.1016/j.jmaa.2009.05.052
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jmaa.2009.05.052
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/0807.3939
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44632
dc.issue.number1
dc.journal.titleJournal of mathematical analysis and applications
dc.language.isoeng
dc.page.final369
dc.page.initial352
dc.publisherElsevier
dc.relation.projectIDMTM2006-00478
dc.relation.projectIDTM2006-14603
dc.relation.projectIDRGPIN 105490-2004
dc.relation.projectIDRGPIN-228057-2004
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordDifferential-equation
dc.subject.keywordBochner
dc.subject.keywordTheorem
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleAn extended class of orthogonal polynomials defined by a Sturm-Liouville problem
dc.typejournal article
dc.volume.number359
dcterms.references[1] J. Aczel, Eine Bemerkung über die Charakterisierung der klassichen orthogonale Polynome, Acta Math. Acad.Sci. Hungar 4 (1953), 315-321. [2] M. Alfaro, M. Álvarez de Morales, M. L. Rezola, Orthogonality of the Jacobi polynomials with negative integer parameters, Journal of Computational and Applied Mathematics, 145 (2002) 379–386. [3] R.A. Askey and J.A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs American Mathematical Society No. 319 (1985). [4] F.V. Atkinson and W.N. Everitt, Orthogonal polynomials which satisfy second order differential equations. E. B. Christoffel (Aachen/Monschau, 1979), pp. 173–181, Birkhuser, Basel-Boston, Mass., 1981. [5] S. Bochner, Über Strum-Liouvillsche Polynomsysteme, Math. Z. 29 (1929), 730-736. [6] W. N. Everitt, L. L. Littlejohn, R. Wellman, The Sobolev orthogonality and spectral analysis of the Laguerre polynomials L −k n for positive integers k, J. Comput. Appl. Math. 171 (2004), 199–234. [7] W. N. Everitt, Note on the X1-Jacobi orthogonal polynomials, arXiV CA 0812.0728 and Note on the X1-Laguerre orthogonal polynomials, arXiV CA 0812.3559 [8] W. N. Everitt, K. H. Kwon, L. L. Littlejohn and R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, J. Comp. Appl. Math 133 (2001), 85109. [9] J. Feldmann, On a characterization of classical orthogonal polynomials, Acta. Sc. Math. 17 (1956), 129133. [10] D. Gómez-Ullate, N. Kamran, and R. Milson, An extension of Bochner’s problem: exceptional invariant subspaces arXiV math-ph 0805.3376 [11] A. Grünbaum and L. Haine, The q-version of a theorem of Bochner, J. Comput. Appl. Math. 68 (1996), 103–114. [12] E. Heine, Theorie der Kugelfunctionen und der verwandten Functionen, Berlin, 1878. [13] E. Hendriksen and H. van Rossum, Semiclassical orthogonal polynomials, in “Orthogonal polynomials and applications” (Bar-le-Duc, 1984), 354–361, Lecture Notes in Math., 1171, Springer, Berlin, 1985. [14] M.E.H. Ismail , A generalization of a theorem of Bochner, J. Comp. Appl. Math. 159 (2003), 319–324. [15] M.E.H. Ismail and W. van Assche, Classical and quantum orthogonal polynomials in one variable, Encyclopedia in Mathematics, Cambridge University Press, Cambridge, 2005. [16] H. L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation, The Pennsylvania State College Studies, No 6, 1940. [17] K. H. Kwon and L. L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), 973–1008. [18] P. Lesky, Die Charakterisierung der klassischen orthogonalen Polynome durch SturmLiouvillesche Differentialgleichungen, Arch. Rat. Mech. Anal. 10 (1962), 341–352. [19] M. Mikolás, Common characterization of the Jacobi, Laguerre and Hermitelike polynomials(in Hungarian), Mate. Lapok 7 (1956), 238–248. [20] C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A: Math. Theor. 41 No. 39, 392001. [21] E.J. Routh, On some properties of certain solutions of a differential equation of the second order, Proc. London Math. Soc., 16 (1885), 245-261. [22] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press, New York-London, 1975. [23] A. Ronveaux, Sur l’équation différentielle du second ordre satisfaite par une classe de polynômes orthogonaux semi-classiques, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 5, 163–166. [24] A. Ronveaux, Polynômes orthogonaux dont les polynômes dérivés sont quasi orthogonaux, C. R. Acad. Sci. Paris S´er. A-B 289 (1979), no. 7, A433–A436. [25] A. Ronveaux and F. Marcell´an, Differential equation for classical-type orthogonal polynomials, Canad. Math. Bull. 32 (1989), no. 4, 404–411. [26] T.J. Stieltjes, Sur certains polynômes qui vérifient une équation différentielle du second ordre et sur la théorie des fonctions de Lam´e, Acta Mathematica 6 (1885), 321-326. [27] G. Szegö, Orthogonal polynomials, Colloquium Publications 23, American Mathematical Society, Providence, 1939. [28] V. B. Uvarov, The connection between systems of polynomials that are orthogonal with respect to different distribution functions, USSR Computat. Math. and Math. Phys. 9 (1969), 25–36.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate14preprint.pdf
Size:
269.69 KB
Format:
Adobe Portable Document Format

Collections