Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

An extended class of orthogonal polynomials defined by a Sturm-Liouville problem

dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorKamran, Niky
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-20T03:53:47Z
dc.date.available2023-06-20T03:53:47Z
dc.date.issued2009-11-01
dc.description© 2009 Elsevier Inc. All rights reserved. We are grateful to Jorge Arvesú, Mourad Ismail, Francisco Marcellán and André Ronveaux for their helpful comments. A special note of thanks goes to Norrie Everitt for his suggestions and remarks regarding operator domains and the limit point/circle analysis, and to Lance Littlejohn for comments regarding classical polynomials with negative integer parameters. The research of DGU is supported in part by the Ramón y Cajal program of the Spanish ministry of Science and Technology and by the DGI under grants MTM2006-00478 and MTM2006-14603. The research of NK is supported in part by NSERC grant RGPIN 105490-2004. The research of RM is supported in part by NSERC grant RGPIN-228057-2004.
dc.description.abstractWe present two infinite sequences of polynomial eigenfunctions of a Sturm-Liouville problem. As opposed to the classical orthogonal polynomial systems, these sequences start with a polynomial of degree one. We denote these polynomials as X(1)-Jacobi and X(1)-Laguerre and we prove that they are orthogonal with respect to a positive definite inner product defined over the compact interval [-1, 1] or the half-line [0, infinity), respectively, and they are a basis of the corresponding L(2) Hilbert spaces. Moreover, we prove a converse statement similar to Bochner's theorem for the classical orthogonal polynomial systems: if a self-adjoint second-order operator has a complete set of polynomial eigenfunctions {p(i)}(i=1)(infinity), then it must be either the X(1)-Jacobi or the X(1)-Laguerre Sturm-Liouville problem. A Rodrigues-type formula can be derived for both of the X(1) polynomial sequences.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish ministry of Science and Technology. Ramón y Cajal program
dc.description.sponsorshipDGI
dc.description.sponsorshipNSERC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30809
dc.identifier.doi10.1016/j.jmaa.2009.05.052
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jmaa.2009.05.052
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/0807.3939
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44632
dc.issue.number1
dc.journal.titleJournal of mathematical analysis and applications
dc.language.isoeng
dc.page.final369
dc.page.initial352
dc.publisherElsevier
dc.relation.projectIDMTM2006-00478
dc.relation.projectIDTM2006-14603
dc.relation.projectIDRGPIN 105490-2004
dc.relation.projectIDRGPIN-228057-2004
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordDifferential-equation
dc.subject.keywordBochner
dc.subject.keywordTheorem
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleAn extended class of orthogonal polynomials defined by a Sturm-Liouville problem
dc.typejournal article
dc.volume.number359
dcterms.references[1] J. Aczel, Eine Bemerkung über die Charakterisierung der klassichen orthogonale Polynome, Acta Math. Acad.Sci. Hungar 4 (1953), 315-321. [2] M. Alfaro, M. Álvarez de Morales, M. L. Rezola, Orthogonality of the Jacobi polynomials with negative integer parameters, Journal of Computational and Applied Mathematics, 145 (2002) 379–386. [3] R.A. Askey and J.A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs American Mathematical Society No. 319 (1985). [4] F.V. Atkinson and W.N. Everitt, Orthogonal polynomials which satisfy second order differential equations. E. B. Christoffel (Aachen/Monschau, 1979), pp. 173–181, Birkhuser, Basel-Boston, Mass., 1981. [5] S. Bochner, Über Strum-Liouvillsche Polynomsysteme, Math. Z. 29 (1929), 730-736. [6] W. N. Everitt, L. L. Littlejohn, R. Wellman, The Sobolev orthogonality and spectral analysis of the Laguerre polynomials L −k n for positive integers k, J. Comput. Appl. Math. 171 (2004), 199–234. [7] W. N. Everitt, Note on the X1-Jacobi orthogonal polynomials, arXiV CA 0812.0728 and Note on the X1-Laguerre orthogonal polynomials, arXiV CA 0812.3559 [8] W. N. Everitt, K. H. Kwon, L. L. Littlejohn and R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, J. Comp. Appl. Math 133 (2001), 85109. [9] J. Feldmann, On a characterization of classical orthogonal polynomials, Acta. Sc. Math. 17 (1956), 129133. [10] D. Gómez-Ullate, N. Kamran, and R. Milson, An extension of Bochner’s problem: exceptional invariant subspaces arXiV math-ph 0805.3376 [11] A. Grünbaum and L. Haine, The q-version of a theorem of Bochner, J. Comput. Appl. Math. 68 (1996), 103–114. [12] E. Heine, Theorie der Kugelfunctionen und der verwandten Functionen, Berlin, 1878. [13] E. Hendriksen and H. van Rossum, Semiclassical orthogonal polynomials, in “Orthogonal polynomials and applications” (Bar-le-Duc, 1984), 354–361, Lecture Notes in Math., 1171, Springer, Berlin, 1985. [14] M.E.H. Ismail , A generalization of a theorem of Bochner, J. Comp. Appl. Math. 159 (2003), 319–324. [15] M.E.H. Ismail and W. van Assche, Classical and quantum orthogonal polynomials in one variable, Encyclopedia in Mathematics, Cambridge University Press, Cambridge, 2005. [16] H. L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation, The Pennsylvania State College Studies, No 6, 1940. [17] K. H. Kwon and L. L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), 973–1008. [18] P. Lesky, Die Charakterisierung der klassischen orthogonalen Polynome durch SturmLiouvillesche Differentialgleichungen, Arch. Rat. Mech. Anal. 10 (1962), 341–352. [19] M. Mikolás, Common characterization of the Jacobi, Laguerre and Hermitelike polynomials(in Hungarian), Mate. Lapok 7 (1956), 238–248. [20] C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A: Math. Theor. 41 No. 39, 392001. [21] E.J. Routh, On some properties of certain solutions of a differential equation of the second order, Proc. London Math. Soc., 16 (1885), 245-261. [22] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press, New York-London, 1975. [23] A. Ronveaux, Sur l’équation différentielle du second ordre satisfaite par une classe de polynômes orthogonaux semi-classiques, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 5, 163–166. [24] A. Ronveaux, Polynômes orthogonaux dont les polynômes dérivés sont quasi orthogonaux, C. R. Acad. Sci. Paris S´er. A-B 289 (1979), no. 7, A433–A436. [25] A. Ronveaux and F. Marcell´an, Differential equation for classical-type orthogonal polynomials, Canad. Math. Bull. 32 (1989), no. 4, 404–411. [26] T.J. Stieltjes, Sur certains polynômes qui vérifient une équation différentielle du second ordre et sur la théorie des fonctions de Lam´e, Acta Mathematica 6 (1885), 321-326. [27] G. Szegö, Orthogonal polynomials, Colloquium Publications 23, American Mathematical Society, Providence, 1939. [28] V. B. Uvarov, The connection between systems of polynomials that are orthogonal with respect to different distribution functions, USSR Computat. Math. and Math. Phys. 9 (1969), 25–36.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate14preprint.pdf
Size:
269.69 KB
Format:
Adobe Portable Document Format

Collections