Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators

dc.contributor.authorAlvarez-Ruso, L.
dc.contributor.authorGonzález Jiménez, Raúl
dc.contributor.authorUdías Moinelo, José Manuel
dc.contributor.authorotros, ...
dc.date.accessioned2025-07-16T10:56:11Z
dc.date.available2025-07-16T10:56:11Z
dc.date.issued2025-04-21
dc.description"L.A.R. acknowledges the support from the Spanish Ministerio de Ciencia e Innovación under contract PID2020-112777GB-I00, the EU STRONG-2020 project under the program H2020-INFRAIA-2018-1, Grant agreement no. 824093 and by Generalitat Valenciana under contract PROMETEO/2020/023. A.M.A. is supported by the U.S. Department of Energy, Office of Science (DOE) under Award No. DEAC02-76SF00515. A.B.B. is supported by U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award No. DE-SC0019465 and by the U.S. National Science Foundation Grants Nos. PHY-2020275 and PHY-2108339. R.G. is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Contract No. DE-AC52-06NA25396. R.G.J. is supported by the government of Madrid and Complutense University under Project PR65/19-22430. M.H. is supported by the Swiss National Science Foundation, Project No. PCEFP2_181117. N.J. acknowledges support by the Research Foundation Flanders (FWO-Flanders). W.J. is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under grant Contract Numbers DE-SC0011090 and DE-SC0021006. F.K. is supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy—EXC 2121 Quantum Universe—390833306. T.K. acknowledges the support from the Science and Technology Council Facilities, UK. H.W.L. is partially supported by the U.S. National Science Foundation under grant PHY 1653405 and and by the Research Corporation for Science Advancement through the Cottrell Scholar Award. K.F.L. is supported in part by the U.S. DOE Grant No. DE-SC0013065 and DOE Grant No. DE-AC05-06OR23177. A.L. is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357 and the NUCLEI SciDAC program. K.M. is supported by U.S. Department of Energy, Office of Science, under Grant DE-SC0015903. J.M. is supported by the ‘Ramón y Cajal’ program with grant RYC-2017-22781, and grants CEX2019-000918-M and PID2020-118758GB-I00 funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by ‘ESF Investing in your future’. A.S.M. is supported by the Department of Energy, Office of Nuclear Physics, under Contract No. DE-SC00046548. S.P. is supported by the U.S. Department of Energy under contract DE-SC0021027, through the Neutrino Theory Network and the FRIB Theory Alliance award DE-SC0013617. T.S. is supported by JSPS KAKENHI Grant JP19H05104. A.S. is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 101020842). P.E.S. is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under grant Contract Number DE-SC0011090 and by the U.S. Department of Energy Early Career Award DE-SC0021006, and by the National Science Foundation under EAGER Grant 2035015 and under Cooperative Agreement PHY-2019786 (The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, http://iaifi.org/). L.E.S. acknowledges support from DOE Grant de-sc0010813. X.Z. is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the FRIB Theory Alliance award DE-SC0013617. Y.Z. is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics through Contract No. DE-AC02-06CH11357, and partially supported by an LDRD initiative at Argonne National Laboratory under Project No. 2020-0020. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. S.B. was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Cluster of Excellence “Precision Physics, Fundamental Interactions, and Structure of Matter” (PRISMA+ EXC 2118/1, Project ID 390831469)."
dc.description.abstractMaximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neutrino scattering. Higher-energy interactions involve a variety of reaction mechanisms including quasi-elastic scattering, resonance production, and deep inelastic scattering that must all be included to reliably predict cross sections for energies relevant to DUNE and other accelerator neutrino experiments. Refined nuclear interaction models in these energy regimes will also be valuable for other applications, such as measurements of reactor, solar, and atmospheric neutrinos. This manuscript discusses the theoretical status, challenges, required resources, and path forward for achieving precise predictions of neutrino-nucleus scattering and emphasizes the need for a coordinated theoretical effort involved lattice QCD, nuclear effective theories, phenomenological models of the transition region, and event generators.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipGeneralitat Valenciana
dc.description.sponsorshipU.S. Department of Energy, Office of Science
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Office of High Energy Physics
dc.description.sponsorshipU.S. National Science Foundation
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipSwiss National Science Foundation
dc.description.sponsorshipResearch Foundation (Flanders, Bélgica)
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Office of Nuclear Physics
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipScience and Technology Council Facilities (Reino Unido)
dc.description.sponsorshipResearch Corporation for Science Advancement (Estados Unidos)
dc.description.sponsorshipNeutrino Theory Network (Estados Unidos)
dc.description.sponsorshipFRIB Theory Alliance (Estados Unidos)
dc.description.sponsorshipU.S. Department of Energy Early Career
dc.description.sponsorshipArgonne National Laboratory (Estados Unidos)
dc.description.sponsorshipFermi Research Alliance (Estados Unidos)
dc.description.statuspub
dc.identifier.citation[1] Alvarez-Ruso L, Ankowski A M, Bacca S, Balantekin A B, Carlson J, Gardiner S, González-Jiménez R, Gupta R, Hobbs T J, Hoferichter M, Isaacson J, Jachowicz N, Jay W I, Katori T, Kling F, Kronfeld A S, Li S W, Lin H-W, Liu K-F, Lovato A, Mahn K, Menéndez J, Meyer A S, Morfin J, Pastore S, Rocco N, Athar M S, Sato T, Schwenk A, Shanahan P E, Strigari L E, Wagman M L, Zhang X, Zhao Y, Acharya B, Andreoli L, Andreopoulos C, Barrow J L, Bhattacharya T, Brdar V, Giusti C, Hayato Y, Khan A N, Kim D, Li Y F, Lin M, Machado P, Martini M, Niewczas K, Pandey V, Papadopoulou A, Plestid R, Roda M, Ruiz Simo I, Simone J N, Sufian R S, Tena-Vidal J, Tomalak O, Tsai Y-D and Udías J M 2025 Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators J. Phys. G: Nucl. Part. Phys. 52 043001
dc.identifier.doi10.1088/1361-6471/adae26
dc.identifier.essn1361-6471
dc.identifier.issn0954-3899
dc.identifier.officialurlhttps://doi.org/10.1088/1361-6471/adae26
dc.identifier.relatedurlhttps://iopscience.iop.org/article/10.1088/1361-6471/adae26
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122577
dc.issue.number4
dc.journal.titleJournal of Physics G: Nuclear and Particle Physics
dc.language.isoeng
dc.page.final043001-75
dc.page.initial043001-1
dc.publisherIOP Publishing
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112777GB-I00/ES/FISICA NUCLEAR Y HADRONICA A ENERGIAS INTERMEDIAS/
dc.relation.projectIDH2020-INFRAIA-2018-1
dc.relation.projectID824093
dc.relation.projectIDPROMETEO/2020/023
dc.relation.projectIDDEAC02-76SF00515
dc.relation.projectIDDE-SC0019465
dc.relation.projectIDPHY-2020275
dc.relation.projectIDPHY-2108339
dc.relation.projectIDDE-AC52-06NA25396
dc.relation.projectIDPR65/19-22430
dc.relation.projectIDPCEFP2_181117
dc.relation.projectIDDE-SC0011090
dc.relation.projectIDDE-SC0021006
dc.relation.projectID390833306
dc.relation.projectIDPHY 1653405
dc.relation.projectIDDE-SC0013065
dc.relation.projectIDDE-AC05-06OR23177
dc.relation.projectIDDE-AC02-06CH11357
dc.relation.projectIDDE-SC0015903
dc.relation.projectIDRYC-2017-22781
dc.relation.projectIDCEX2019-000918-M
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118758GB-I00/ES/HACIA LA COMPRENSION DE LA MATERIA GOBERNADA POR LA INTERACCION FUERTE: QUARKS, HADRONES, NUCLEOS Y ESTRELLAS DE NEUTRONES/
dc.relation.projectIDDE-SC00046548
dc.relation.projectIDDE-SC0021027
dc.relation.projectIDDE-SC0013617
dc.relation.projectIDJP19H05104
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101020842/EU
dc.relation.projectIDDE-SC0011090
dc.relation.projectIDDE-SC0021006
dc.relation.projectID2035015
dc.relation.projectIDPHY-2019786
dc.relation.projectIDde-sc0010813
dc.relation.projectIDDE-SC0013617
dc.relation.projectIDDE-AC02-06CH11357
dc.relation.projectID2020-0020
dc.relation.projectIDDEAC02-07CH11359
dc.relation.projectID390831469
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu539.1
dc.subject.keywordneutrino scattering
dc.subject.keywordnuclear theory
dc.subject.keywordphenomenology
dc.subject.keywordevent generators
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleTheoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number52
dspace.entity.typePublication
relation.isAuthorOfPublication2e3010d5-e544-420d-8262-a9a750a601c8
relation.isAuthorOfPublication3dc23e23-6e7e-47dd-bd61-8b6b7a1ad75f
relation.isAuthorOfPublication.latestForDiscovery2e3010d5-e544-420d-8262-a9a750a601c8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Theoretical tools for neutrino scattering.pdf
Size:
2.82 MB
Format:
Adobe Portable Document Format

Collections