The Ambrose-Singer Theorem for cohomogeneity one Riemannian manifolds
dc.contributor.author | Carmona Jiménez, J.L. | |
dc.contributor.author | Castrillón López, Marco | |
dc.contributor.author | Díaz Ramos, J.C. | |
dc.date.accessioned | 2024-09-09T08:18:14Z | |
dc.date.available | 2024-09-09T08:18:14Z | |
dc.date.issued | 2023 | |
dc.description.abstract | We characterize isometric actions when the principal orbits are hypersurfaces by the existence of a linear connection satisfying a set of covariant equations. We use this results to characterize isomorphic cohomogeneity one foliations in terms of these connections and give explicit examples of these objects in the Euclidean space and the real hyperbolic space. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.status | unpub | |
dc.identifier.citation | Carmona Jiménez, J. L., Castrillón López, M., & Díaz-Ramos, J. C. (2023). The Ambrose-Singer Theorem for cohomogeneity one Riemannian manifolds. arXiv e-prints, arXiv-2312. | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/108005 | |
dc.language.iso | eng | |
dc.rights.accessRights | open access | |
dc.subject.keyword | Ambrose-Singer theorem | |
dc.subject.keyword | Cohomogeneity one actions | |
dc.subject.keyword | Canonical connection | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | The Ambrose-Singer Theorem for cohomogeneity one Riemannian manifolds | |
dc.type | journal article | |
dc.type.hasVersion | AO | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 32e59067-ef83-4ca6-8435-cd0721eb706b | |
relation.isAuthorOfPublication.latestForDiscovery | 32e59067-ef83-4ca6-8435-cd0721eb706b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- castrillon_ambrose_singer.pdf
- Size:
- 238.01 KB
- Format:
- Adobe Portable Document Format