Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

The Ambrose-Singer Theorem for cohomogeneity one Riemannian manifolds

dc.contributor.authorCarmona Jiménez, J.L.
dc.contributor.authorCastrillón López, Marco
dc.contributor.authorDíaz Ramos, J.C.
dc.date.accessioned2024-09-09T08:18:14Z
dc.date.available2024-09-09T08:18:14Z
dc.date.issued2023
dc.description.abstractWe characterize isometric actions when the principal orbits are hypersurfaces by the existence of a linear connection satisfying a set of covariant equations. We use this results to characterize isomorphic cohomogeneity one foliations in terms of these connections and give explicit examples of these objects in the Euclidean space and the real hyperbolic space.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statusunpub
dc.identifier.citationCarmona Jiménez, J. L., Castrillón López, M., & Díaz-Ramos, J. C. (2023). The Ambrose-Singer Theorem for cohomogeneity one Riemannian manifolds. arXiv e-prints, arXiv-2312.
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108005
dc.language.isoeng
dc.rights.accessRightsopen access
dc.subject.keywordAmbrose-Singer theorem
dc.subject.keywordCohomogeneity one actions
dc.subject.keywordCanonical connection
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleThe Ambrose-Singer Theorem for cohomogeneity one Riemannian manifolds
dc.typejournal article
dc.type.hasVersionAO
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castrillon_ambrose_singer.pdf
Size:
238.01 KB
Format:
Adobe Portable Document Format

Collections