A general test for univariate seasonality

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Facultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
Google Scholar
Research Projects
Organizational Units
Journal Issue
We propose a general test for univariate seasonality. Starting from a multivariate model for the seasons. some constraints must hold both, on the covariance matrix of the innovations, as well as among coefficients across equations, for a univariate representation of seasonality to be appropriate. Appied to a set of 23 U.K. macroeconomic variables, our test shows that a multivariate representation of seasonality should be preferred in at least 8 cases.
Se propone un contraste para la detección de estacionalidad univariante. Para que la estacionalidad presente en una serie temporal pueda ser modelizada en un contexto univariante, el modelo multivariante estocástico de las estaciones deberá incorporar determinadas restricciones, tanto sobre la matriz de varianzas y covarianzas de las innovaciones como entre los coeficientes de las distintas ecuaciones. Cuando el contraste propuesto se aplica a un conjunto de 23 variables de la economía del Reino Unido, en al menos 8 casos se detecta una estructura multivariante de la estacionalidad.
Birchenhall, C.R., Bladen-Hovell, R.C., Chui, A.P.L., Osborn, D.R. and Smith, J.P. (1989), "A seasonal model of consumption", Economic Journal, 99, 837-843. Box, G.E.P, and Jenkins, G.M. (1976), Time Series Analysis: Forecasting and Control, San Francisco, Holden Day. Box, G.E.P. and Tiao, G.C. (1975), "Intervention analysis with applications to economic and environmental problems", Journal of the American Statistical Association, 70, 70-79. Franses, P.H. and Romijn, G. (1993), "Periodic integration in quarterly UK macroeconomic variables", International Journal of Forecasting, 9, 467-476. Franses, P.H. and R. Paap (1994), "Model selection in periodic autoregressions" Oxford Bulletin of Economics and Statistics. 56, 4, 421-439. Hillmer, S.E. and G.C. Tiao (1979), "Likelihood function of stationary multiple autoregressive moving average models", Joumal of the American Statistical Association, 74, 652-660. Hylleberg, S., R.F. Engle, C.W.J. Granger and B.S. Yoo (1990), "Seasonal integration and cointegration", Journal of Econometrics, 44, 215-238. Lütkepohl, H. (1993), Introduction to multiple time series analysis, Springer Verlag, Berlin. Osborn, D.R., A.P.L. Chui, J.P. Smilh and C.R. Birchenhall (1988), "Seasonalily and tbe order of integration for consumption", Oxford Bulletin of Economics and Statistics, 50, 361-377. Osborn, D.R. (1990), "A survey of seasonality in UK macroeconomic variables", International Journal of Forecasting, 6, 327-336. Osborn, D.R. (1991), "The implications of periodically varying coefficients for seasonal time series processes", Journal of Econometrics, 48, 373-384. Park, J.Y. and P.C.B. Phillips (1989), "Statistical inference in regressions with integrated processes: Part 2", Econometric Theory, 5, 95-131. Sims, C.A. (1980), "Macroeconomics and reality", Econometrica, 48, 1-49. Sims, C.A, J.H. Stock and M.W. Watson (1990), "Inference in time series models with some unit roots", Econometrica, 58, 113-144. Theil, H. (1983), "Linear algebra and matrix methods in econometrics", Handbook of Econometrics, Vol. 1, 3-65.