Dynamic energy budget approach to evaluate antibiotic effects on biofilms

Loading...
Thumbnail Image
Full text at PDC
Publication date

2018

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Citation
Birnir, B., Carpio Rodríguez, A. M., Cebrián, E., Vidal Lloret, P. «Dynamic Energy Budget Approach to Evaluate Antibiotic Effects on Biofilms». Communications in Nonlinear Science and Numerical Simulation, vol. 54, enero de 2018, pp. 70-83. DOI.org (Crossref), https://doi.org/10.1016/j.cnsns.2017.05.016.
Abstract
Quantifying the action of antibiotics on biofilms is essential to devise therapies against chronic infections. Biofilms are bacterial communities attached to moist surfaces, sheltered from external aggressions by a polymeric matrix. Coupling a dynamic energy budget based description of cell metabolism to surrounding concentration fields, we are able to approximate survival curves measured for different antibiotics. We reproduce numerically stratified distributions of cell types within the biofilm and introduce ways to incorporate different resistance mechanisms. Qualitative predictions follow that are in agreement with experimental observations, such as higher survival rates of cells close to the substratum when employing antibiotics targeting active cells or enhanced polymer production when antibiotics are administered. The current computational model enables validation and hypothesis testing when developing therapies.
Research Projects
Organizational Units
Journal Issue
Description
Keywords
Collections