Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Charm diffusion in a pion gas implementing unitarity, chiral and heavy quark symmetries.

dc.contributor.authorLlanes Estrada, Felipe José
dc.contributor.authorTorres Rincón, Juan Miguel
dc.contributor.authorCabrera Urban, Daniel
dc.date.accessioned2023-06-20T03:34:35Z
dc.date.available2023-06-20T03:34:35Z
dc.date.issued2011-10
dc.description© 2011 Elsevier Inc. All rights reserved. This work was supported by grants FPA 2008-00592, FIS2008-01323, FPA2007-29115-E, FIS2006-03438, PR34-1856-BSCH, UCM-BSCH, GR58/08 910309, PR34/07-15875 (Spain) and by the EU Integrated Infrastructure Initiative Hadron Physics Project under Grant Agreement n. 227431. The authors are grateful to Li Sheng Geng for updating them on the current D pi meson effective Lagrangians. Luciano Abreu is grateful for the hospitality at Univ. Complutense of Madrid where this work has been completed and acknowledges financial support from CAPES/Fundacion Carolina. Daniel Cabrera acknowledges financial support from Centro Nacional de Fisica de Particulas, Astroparticulas y Nuclear (CPAN, Consolider-Ingenio 2010). Juan M. Torres-Rincon is recipient of an FPU scholarship from the Spanish Ministry of Education.
dc.description.abstractWe compute the charm drag and diffusion coefficients in a hot pion gas, such as is formed in a heavy ion collision after the system cools sufficiently to transit into the hadron phase. We fully exploit heavy quark effective theory (with both D and D* mesons as elementary degrees of freedom during the collision) and chiral perturbation theory, and employ standard unitarization to reach higher temperatures. We find that a certain friction and shear diffusion coefficients are almost p(2)-independent at a fixed temperature which simplifies phenomenological analysis. At the higher end of reliability of our calculation, T similar or equal to 150 MeV, we report a charm relaxation length lambda(c) similar or equal to 40 fm, in agreement with the model estimate of He, Fries and Rapp. The momentum of a 1 GeV charm quark decreases about 50 MeV per fermi when crossing the hadron phase.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEU Integrated Infrastructure Initiative
dc.description.sponsorshipCAPES/Fundacion Carolina
dc.description.sponsorshipCentro Nacional de Fisica de Particulas, Astroparticulas y Nuclear (CPAN)
dc.description.sponsorshipSpanish Ministry of Education
dc.description.sponsorshipUCM-BSCH
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22303
dc.identifier.doi10.1016/j.aop.2011.06.006
dc.identifier.issn0003-4916
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.aop.2011.06.006
dc.identifier.relatedurlhttp://arxiv.org/abs/1104.3815
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43928
dc.issue.number10
dc.journal.titleAnnals of Physics
dc.language.isoeng
dc.page.final2772
dc.page.initial2737
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.projectID227431
dc.relation.projectIDFPA 2008-00592
dc.relation.projectIDFIS2008-01323
dc.relation.projectIDFPA2007-29115-E
dc.relation.projectIDFIS2006-03438
dc.relation.projectIDPR34-1856-BSCH
dc.relation.projectIDGR58/08 910309
dc.relation.projectIDPR34/07-15875
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordDiffusion Coefficient
dc.subject.keywordCharmed Mesons
dc.subject.keywordHeavy Ion Collisions
dc.subject.keywordChiral Perturbation Theory
dc.subject.keywordHeavy Quark Effective Theory
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleCharm diffusion in a pion gas implementing unitarity, chiral and heavy quark symmetries.
dc.typejournal article
dc.volume.number326
dcterms.references[1] B. Svetitsky, A. Uziel, Phys. Rev. D 55 (1997) 2616 2623. [hep-ph/9606284]; see also B. Svetitsky, Phys. Rev. D37 (1988) 2484–2491. [2] C. Fuchs, et al., Phys. Rev. C 73 (2006) 035204. [3] M.F.M. Lutz, M. Soyeur, Nuclear Phys. A 813 (2008) 14 95. arXiv:0710.1545 [hep-ph]. [4] F.-K. Guo, C. Hanhart, U.-G. Meissner, Eur. Phys. J. A 40 (2009) 171–179. arXiv:0901.1597 [hep ph]. [5] L.S. Geng, N. Kaiser, J. Martin-Camalich, W. Weise, Phys. Rev. D 82 (2010) 054022. arXiv:1008.0383 [hep-ph]. [6] D. Gamermann, E. Oset, Eur. Phys. J. A 33 (2007) 119 131. arXiv:0704.2314 [hep-ph]. [7] Y.-R. Liu, X. Liu, S.-L. Zhu, Phys. Rev. D 79 (2009) 094026. arXiv:0904.1770 [hep-ph]. [8] L. Tolos, C. Garcia-Recio, J. Nieves, Phys. Rev. C 80 (2009) 065202. arXiv:0905.4859 [nucl-th]. [9] M. Laine, arXiv:1103.0372 [hep-ph]. [10] M. He, R.J. Fries, R. Rapp, arXiv:1103.6279 [nucl-th]. [11] S. Ghosh, S.K. Das, S. Sarkar, Jan-e Alam, arXiv:1104.0163 [nucl-th]. [12] G.D. Moore, D. Teaney, Phys. Rev. C 71 (2005) 064904. [hep-ph/0412346]. [13] H. van Hees, V. Greco, R. Rapp, Phys. Rev. C 73 (2006) 034913. [nucl-th/0508055]; see also Riek, R. Rapp, Phys. Rev. C 82 (2010) 035201. [14] K. Nakamura, et al., Particle data group collaboration, J. Phys. G G37 (2010) 075021. [15] G.’t Hooft, Nuclear Phys. B 72 (1974) 461. [16] J.A. Oller, E. Oset, Nuclear Phys. A 620 (1997) 438 456. [hep-ph/9702314]. [17] L. Roca, E. Oset, J. Singh, Phys. Rev. D 72 (2005) 014002. [hep-ph/0503273]. [18] A. Manohar, M. Wise, Heavy Quark Effective Theory, Cambridge University Press, 2000. [19] G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nuclear Phys. B 321 (1989) 311. [20] M. Cleven, F.-K. Guo, C. Hanhart, U.-G. Meissner, Eur. Phys. J. A 47 (2011) 19. arXiv:1009.3804 [hep-ph]. [21] A. Dobado, F.J. Llanes-Estrada, J.M. Torres-Rincon, Phys. Rev. D 79 (2009) 014002. arXiv:0803.3275 [hep-ph]. [22] R. Averbeck, PHENIX collaboration, J. Phys. G G35 (2008) 104115. [23] C. Gombeaud, J.-Y. Ollitrault, Phys. Rev. C 77 (2008) 054904. [nucl-th/0702075]. [24] S. LaPointe, STAR collaboration, J. Phys. Conf. Ser. 230 (2010) 012006. [25] A. Dainese, for the ALICE collaboration, Nuclear Phys. A 855 (2011) 166–173. [26] R. Rapp, H. van Hees, arXiv:0803.0901 [hep-ph]. [27] H. Risken, The Fokker–Planck Equation, Springer Verlag, Berlin, 1989. [28] L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Course of Theoretical Physics. Vol. 10: Physical Kinetics, Butterworth-Heinemann, Oxford, 1981. [29] A. Dobado, F.J. Llanes-Estrada, Phys. Rev. D 69 (2004) 116004. [hep-ph/0309324]. [30] C. Manuel, A. Dobado, F.J. Llanes-Estrada, J. High Energy Phys. 0509 (2005) 076. [hep ph/0406058]. [31] G.P. Lepage, J. Comput. Phys. 27 (1978) 192–203.
dspace.entity.typePublication
relation.isAuthorOfPublication6290fe55-04e6-4532-91e6-1df735bdbdca
relation.isAuthorOfPublicationdf1ee7e5-a557-43b2-8b7a-f7f267eb1f47
relation.isAuthorOfPublication.latestForDiscovery6290fe55-04e6-4532-91e6-1df735bdbdca

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Llanes-Estrada_FJ08.pdf
Size:
790.44 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Llanes-Estrada_FJ08preprint.pdf
Size:
506.91 KB
Format:
Adobe Portable Document Format

Collections