An application of the Krein-Milman theorem to Bernstein and Markov inequalities

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Heldermann Verlag
Google Scholar
Research Projects
Organizational Units
Journal Issue
Given a trinomial of the form p(x) = ax(m) + bx(n) + c with a, b, c is an element of R, we obtain, explicitly, the best possible constant M.,,(x) in the inequality vertical bar p'(x)vertical bar <= M-m,M-n(x).parallel to p parallel to, where x is an element of [-1, 1] is fixed and parallel to p parallel to is the sup norm of p over [-1, 1]. This answers a question to an old problem, first studied by Markov, for a large family of trinomials. We obtain the mappings M-m,M-n(x) by means of classical convex analysis techniques, in particular, using the Krein-Milman approach.
R. M. Aron, M. Klimek: Supremum norms for quadratic polynomials, Arch. Math. 76 (2001) 73–80. S. Bernstein: Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degree donné, Belg. Mem. in 4◦ 4 (1912) 1–103. S. Bernstein: Collected works: Vol. I. The Constructive Theory of Functions (1905-1939), English translation, Atomic Energy Commission, Springfield (1958). R. P. Boas: Inequalities for the derivatives of polynomials, Math. Mag. 42 (1969) 165–174. A. A. Markov: On a problem of D. I. Mendeleev, Zap. Imp. Akad. Nauk. 62 (1889) 1–24(in Russian). A. A. Markov: On a question of D. I. Mendeleev, available at http://www.math.technion. G. A. Muñoz-Fernández, J. B. Seoane-Sepúlveda: Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008) 1069–1087. E. V. Voronovskaja: The functional of the first derivative and improvement of a theorem of A. A. Markov, Izv. Akad. Nauk SSSR. Ser. Mat. 23 (1959) 951–962 (in Russian). E. V. Voronovskaja: The Method of Functional Calculus and its Applications, AMS, Providence (1970).