Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An application of the Krein-Milman theorem to Bernstein and Markov inequalities

dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorSarantopoulos, Yannis
dc.contributor.authorSeoane-Sepúlveda, Juan B.
dc.date.accessioned2023-06-20T09:42:10Z
dc.date.available2023-06-20T09:42:10Z
dc.date.issued2008
dc.description.abstractGiven a trinomial of the form p(x) = ax(m) + bx(n) + c with a, b, c is an element of R, we obtain, explicitly, the best possible constant M.,,(x) in the inequality vertical bar p'(x)vertical bar <= M-m,M-n(x).parallel to p parallel to, where x is an element of [-1, 1] is fixed and parallel to p parallel to is the sup norm of p over [-1, 1]. This answers a question to an old problem, first studied by Markov, for a large family of trinomials. We obtain the mappings M-m,M-n(x) by means of classical convex analysis techniques, in particular, using the Krein-Milman approach.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17232
dc.identifier.issn0944-6532
dc.identifier.officialurlhttp://www.heldermann-verlag.de/jca/jca15/jca0740_b.pdf
dc.identifier.relatedurlhttp://www.heldermann.de/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50212
dc.issue.number2
dc.journal.titleJournal of Convex Analysis
dc.language.isoeng
dc.page.final312
dc.page.initial299
dc.publisherHeldermann Verlag
dc.relation.projectID2006-03531
dc.rights.accessRightsrestricted access
dc.subject.cdu519.6
dc.subject.keywordBernstein and Markov inequalies
dc.subject.keywordtrinomials
dc.subject.keywordextreme points
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleAn application of the Krein-Milman theorem to Bernstein and Markov inequalities
dc.typejournal article
dc.volume.number15
dcterms.referencesR. M. Aron, M. Klimek: Supremum norms for quadratic polynomials, Arch. Math. 76 (2001) 73–80. S. Bernstein: Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degree donné, Belg. Mem. in 4◦ 4 (1912) 1–103. S. Bernstein: Collected works: Vol. I. The Constructive Theory of Functions (1905-1939), English translation, Atomic Energy Commission, Springfield (1958). R. P. Boas: Inequalities for the derivatives of polynomials, Math. Mag. 42 (1969) 165–174. A. A. Markov: On a problem of D. I. Mendeleev, Zap. Imp. Akad. Nauk. 62 (1889) 1–24(in Russian). A. A. Markov: On a question of D. I. Mendeleev, available at http://www.math.technion. ac.il/hat/papers.html. G. A. Muñoz-Fernández, J. B. Seoane-Sepúlveda: Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008) 1069–1087. E. V. Voronovskaja: The functional of the first derivative and improvement of a theorem of A. A. Markov, Izv. Akad. Nauk SSSR. Ser. Mat. 23 (1959) 951–962 (in Russian). E. V. Voronovskaja: The Method of Functional Calculus and its Applications, AMS, Providence (1970).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MunozFer15.pdf
Size:
258.65 KB
Format:
Adobe Portable Document Format

Collections