An application of the Krein-Milman theorem to Bernstein and Markov inequalities
dc.contributor.author | Muñoz-Fernández, Gustavo A. | |
dc.contributor.author | Sarantopoulos, Yannis | |
dc.contributor.author | Seoane-Sepúlveda, Juan B. | |
dc.date.accessioned | 2023-06-20T09:42:10Z | |
dc.date.available | 2023-06-20T09:42:10Z | |
dc.date.issued | 2008 | |
dc.description.abstract | Given a trinomial of the form p(x) = ax(m) + bx(n) + c with a, b, c is an element of R, we obtain, explicitly, the best possible constant M.,,(x) in the inequality vertical bar p'(x)vertical bar <= M-m,M-n(x).parallel to p parallel to, where x is an element of [-1, 1] is fixed and parallel to p parallel to is the sup norm of p over [-1, 1]. This answers a question to an old problem, first studied by Markov, for a large family of trinomials. We obtain the mappings M-m,M-n(x) by means of classical convex analysis techniques, in particular, using the Krein-Milman approach. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MTM | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17232 | |
dc.identifier.issn | 0944-6532 | |
dc.identifier.officialurl | http://www.heldermann-verlag.de/jca/jca15/jca0740_b.pdf | |
dc.identifier.relatedurl | http://www.heldermann.de/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50212 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Convex Analysis | |
dc.language.iso | eng | |
dc.page.final | 312 | |
dc.page.initial | 299 | |
dc.publisher | Heldermann Verlag | |
dc.relation.projectID | 2006-03531 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.6 | |
dc.subject.keyword | Bernstein and Markov inequalies | |
dc.subject.keyword | trinomials | |
dc.subject.keyword | extreme points | |
dc.subject.ucm | Análisis numérico | |
dc.subject.unesco | 1206 Análisis Numérico | |
dc.title | An application of the Krein-Milman theorem to Bernstein and Markov inequalities | |
dc.type | journal article | |
dc.volume.number | 15 | |
dcterms.references | R. M. Aron, M. Klimek: Supremum norms for quadratic polynomials, Arch. Math. 76 (2001) 73–80. S. Bernstein: Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degree donné, Belg. Mem. in 4◦ 4 (1912) 1–103. S. Bernstein: Collected works: Vol. I. The Constructive Theory of Functions (1905-1939), English translation, Atomic Energy Commission, Springfield (1958). R. P. Boas: Inequalities for the derivatives of polynomials, Math. Mag. 42 (1969) 165–174. A. A. Markov: On a problem of D. I. Mendeleev, Zap. Imp. Akad. Nauk. 62 (1889) 1–24(in Russian). A. A. Markov: On a question of D. I. Mendeleev, available at http://www.math.technion. ac.il/hat/papers.html. G. A. Muñoz-Fernández, J. B. Seoane-Sepúlveda: Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008) 1069–1087. E. V. Voronovskaja: The functional of the first derivative and improvement of a theorem of A. A. Markov, Izv. Akad. Nauk SSSR. Ser. Mat. 23 (1959) 951–962 (in Russian). E. V. Voronovskaja: The Method of Functional Calculus and its Applications, AMS, Providence (1970). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1