Publication: A comment concerning cohomology and invariants of Lie algebras with respect to contractions and deformations
Loading...
Full text at PDC
Publication Date
2007
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
Contrary to the expected behavior, we show the existence of non-invertible deformations of Lie algebras which can generate invariants for the coadjoint representation,
as well as delete cohomology with values in the trivial or adjoint module. A criterion to decide whether a given deformation is invertible or not is given in dependence
of the Poincaré polynomial.
Description
UCM subjects
Unesco subjects
Keywords
Citation
Vilela Mendes R 1994 J. Phys. A: Math. Gen. 27 8091
Fadeev L D 1988 Asia-Pacific Physics News 3 21
Amelino-Camendia G 2002 Int. J. Mod. Phys. D 11 35
Chryssomalakos C, Okon E 2004 Int. J. Mod. Phys. D 13 1817
de Azcárraga J A, Izquierdo J M, Picón M and Varela O 2004 Class.Quant.Grav. 21 S1375
Chaichian M, Presnajder P 2004 Phys.Lett. A 322 156
Weimar-Woods E 2000 Rev. Math. Phys. 12 1505
Nijenhuis A, Richardson R W 1966 Bull. Amer. Math. Soc. 72 1
Bacry H, Levy-Leblond J M 1968 J. Math. Phys. 9 1305
Campoamor-Stursberg R 2003 Acta Physica Polonica B 34 3901
Turkowski P 1988 J. Math. Phys. 29 2139
Cornwell J F 1984 Group Theory in Physics (New York: Academic)
Racah G 1951 Group Theory and Spectroscopy (Princeton Univ. Press, N. J.)
Campoamor-Stursberg R 2004 Phys. Lett. A 327 138
Campoamor-Stursberg R 2006 SIGMA 2 p28
Coley A, Hervik S 2005 Class. Quantum. Grav. 22 579
Hervik S, van den Hoogen R J, Lim W C and Coley A A 2006 Class. Quantum. Grav. 23 845
de Azcárraga J A, Izquierdo J M 1995 Lie Groups, Lie Algebras, Cohomology and some
Applications to Physics (Cambridge: Cambridge Univ. Press)