A comment concerning cohomology and invariants of Lie algebras with respect to contractions and deformations

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Contrary to the expected behavior, we show the existence of non-invertible deformations of Lie algebras which can generate invariants for the coadjoint representation, as well as delete cohomology with values in the trivial or adjoint module. A criterion to decide whether a given deformation is invertible or not is given in dependence of the Poincaré polynomial.
UCM subjects
Unesco subjects
Vilela Mendes R 1994 J. Phys. A: Math. Gen. 27 8091 Fadeev L D 1988 Asia-Pacific Physics News 3 21 Amelino-Camendia G 2002 Int. J. Mod. Phys. D 11 35 Chryssomalakos C, Okon E 2004 Int. J. Mod. Phys. D 13 1817 de Azcárraga J A, Izquierdo J M, Picón M and Varela O 2004 Class.Quant.Grav. 21 S1375 Chaichian M, Presnajder P 2004 Phys.Lett. A 322 156 Weimar-Woods E 2000 Rev. Math. Phys. 12 1505 Nijenhuis A, Richardson R W 1966 Bull. Amer. Math. Soc. 72 1 Bacry H, Levy-Leblond J M 1968 J. Math. Phys. 9 1305 Campoamor-Stursberg R 2003 Acta Physica Polonica B 34 3901 Turkowski P 1988 J. Math. Phys. 29 2139 Cornwell J F 1984 Group Theory in Physics (New York: Academic) Racah G 1951 Group Theory and Spectroscopy (Princeton Univ. Press, N. J.) Campoamor-Stursberg R 2004 Phys. Lett. A 327 138 Campoamor-Stursberg R 2006 SIGMA 2 p28 Coley A, Hervik S 2005 Class. Quantum. Grav. 22 579 Hervik S, van den Hoogen R J, Lim W C and Coley A A 2006 Class. Quantum. Grav. 23 845 de Azcárraga J A, Izquierdo J M 1995 Lie Groups, Lie Algebras, Cohomology and some Applications to Physics (Cambridge: Cambridge Univ. Press)