A comment concerning cohomology and invariants of Lie algebras with respect to contractions and deformations
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.date.accessioned | 2023-06-20T10:35:16Z | |
dc.date.available | 2023-06-20T10:35:16Z | |
dc.date.issued | 2007 | |
dc.description.abstract | Contrary to the expected behavior, we show the existence of non-invertible deformations of Lie algebras which can generate invariants for the coadjoint representation, as well as delete cohomology with values in the trivial or adjoint module. A criterion to decide whether a given deformation is invertible or not is given in dependence of the Poincaré polynomial. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21618 | |
dc.identifier.doi | 10.1016/j.physleta.2006.10.050 | |
dc.identifier.issn | 0375-9601 | |
dc.identifier.officialurl | https//doi.org/10.1016/j.physleta.2006.10.050 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0375960106016422 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50673 | |
dc.issue.number | 5-6 | |
dc.journal.title | Physics Letters A | |
dc.language.iso | eng | |
dc.page.final | 367 | |
dc.page.initial | 360 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512 | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | A comment concerning cohomology and invariants of Lie algebras with respect to contractions and deformations | en |
dc.type | journal article | |
dc.volume.number | 362 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 72801982-9f3c-4db0-b765-6e7b4aa2221b |
Download
Original bundle
1 - 1 of 1