Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Numerical simulation and experimental studies on heat and mass transfer using sweeping gas membrane distillation

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv
Citations
Google Scholar

Citation

Abstract

A plate-and-frame membrane module has been used in sweeping gas membrane distillation process. Both numerical simulation and experimental studies have been carried out. The numerical simulation focuses on modelling heat, mass and momentum transport through the three parts of the sweeping gas membrane distillation system, namely: feed, membrane and permeate side. The model is based on Navier-Stokes equations coupled with the Darcy-Brinkman-Forcheimer formulation in transient regime in two-dimensions. A strong solver based on a compact Hermitian method has been used for solving partial derivative equations. The whole parts of the system are represented by only one domain of resolution instead of considering multi-domain approach but using non-regular discretization. The numerical simulations were conducted for different operational parameters at the module inlets such as the feed temperature, the permeate temperature, the sodium chloride feed concentration, the feed velocity and the permeate velocity. The results were validated in comparison with experimental results. Good agreements between the numerical simulation and the experimental permeate fluxes have been found.

Research Projects

Organizational Units

Journal Issue

Description

© 2010 Elsevier B.V. The authors are gratefully thankful to the financial support of AECI (Agencia Española de Cooperación Internacional, Ministerio de Asuntos Exteriores y de Cooperación) through the project A/018359/08.

UCM subjects

Unesco subjects

Keywords

Collections