Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Numerical simulation and experimental studies on heat and mass transfer using sweeping gas membrane distillation

dc.contributor.authorCharfi, K.
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.contributor.authorSafi, M. J.
dc.date.accessioned2023-06-20T03:42:51Z
dc.date.available2023-06-20T03:42:51Z
dc.date.issued2010-09-15
dc.description© 2010 Elsevier B.V. The authors are gratefully thankful to the financial support of AECI (Agencia Española de Cooperación Internacional, Ministerio de Asuntos Exteriores y de Cooperación) through the project A/018359/08.
dc.description.abstractA plate-and-frame membrane module has been used in sweeping gas membrane distillation process. Both numerical simulation and experimental studies have been carried out. The numerical simulation focuses on modelling heat, mass and momentum transport through the three parts of the sweeping gas membrane distillation system, namely: feed, membrane and permeate side. The model is based on Navier-Stokes equations coupled with the Darcy-Brinkman-Forcheimer formulation in transient regime in two-dimensions. A strong solver based on a compact Hermitian method has been used for solving partial derivative equations. The whole parts of the system are represented by only one domain of resolution instead of considering multi-domain approach but using non-regular discretization. The numerical simulations were conducted for different operational parameters at the module inlets such as the feed temperature, the permeate temperature, the sodium chloride feed concentration, the feed velocity and the permeate velocity. The results were validated in comparison with experimental results. Good agreements between the numerical simulation and the experimental permeate fluxes have been found.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipAECI (Agencia Española de Cooperación Internacional, Ministerio de Asuntos Exteriores y de Cooperación
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26267
dc.identifier.doi10.1016/j.desal.2010.04.028
dc.identifier.issn0011-9164
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.desal.2010.04.028
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44302
dc.issue.number01-mar
dc.journal.titleDesalination
dc.language.isoeng
dc.page.final96
dc.page.initial84
dc.publisherElsevier Science Bv
dc.relation.projectIDA/018359/08
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordPore-size distribution
dc.subject.keywordTransport
dc.subject.keywordModel
dc.subject.keywordFlow
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleNumerical simulation and experimental studies on heat and mass transfer using sweeping gas membrane distillation
dc.typejournal article
dc.volume.number259
dcterms.references[1] M. Khayet, Membrane distillation, in: N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura (Eds.), Advanced Membrane Technology and Applications, John Wiley & Sons, New Jersey, 2008, pp. 297–370. [2] K.W. Lawson,D.R. Lloyd,Membrane distillation: review, J.Membr. Sci. 124 (1997) 1–25. [3] M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process: review, J. Membr. Sci. 285 (2006) 4–29. [4] M. Khayet, M.P. Godino, J.I. Mengual, Possibility of nuclear desalination through various membrane distillation configurations: a comparative study, Int. J. Nuclear Desalination 1 (2003) 30–46. [5] J. Phattaranawik, R. Jiraratananon, A.G. Fane, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, J. Membr. Sci. 215 (2003) 75–85. [6] L. Martínez, F.J. Florido Díaz, A. Hernández, P. Prádanos, Characterization of three hydrophobic porous membranes used in membrane distillation: modelling and evaluation of their water vapour permeabilities, J. Membr. Sci. 203 (2002) 15–27. [7] M. Khayet, T. Matsuura, Pervaporation and vacuum membrane distillation processes: modelling and experiments, AIChE J. 50 (2004) 1697–1712. [8] M. Khayet, A. Velázquez, J.I. Mengual, Modelling mass transport through a porous partition: effect of pore size distribution, J. Non-Equilib. Thermodyn. 29 (2004) 279–299. [9] A.O. Imdakm, T. Matsuura, A Monte Carlo simulation model for membrane distillation processes: direct contact (MD), J. Membr. Sci. 237 (2004) 51–59. [10] A.O. Imdakm, M. Khayet, T. Matsuura, A Monte Carlo simulation model for vacuum membrane distillation process, J. Membr. Sci. 306 (2007) 341–348. [11] J.I. Mengual, M. Khayet, M.P. Godino, Heat and mass transfer in vacuum membrane distillation, Int. J. Heat Mass Transfer 47 (2004) 865–875. [12] M. Khayet, P. Godino, J.I. Mengual, Theory and experiments on sweeping gas membrane distillation, J. Membr. Sci. 165 (2000) 261–272. [13] M. Khayet, P. Godino, J.I. Mengual, Nature of flow on sweeping gas membrane distillation, J. Membr. Sci. 170 (2000) 243–255. [14] S. Bouguesha, R. Chouikh, M. Dhabi, Numerical study of the coupled heat and mass transfer in membrane distillation, Desalination 152 (2002) 245–252. [15] R. Chouikh, S. Bouguesha, M. Dhahbi, Modelling of a modified air gap distillation membrane for the desalination of seawater, Desalination 181 (2005) 257–265. [16] M.N. Chernyshov, G.W. Meindersma, A.B. de Haan, Modelling temperature and salt concentration distribution in membrane distillation feed channel, Desalination 157 (2003) 315–324. [17] A.M. Alklaibi, N. Lior, Transport analysis of air-gap membrane distillation, J. Membr. Sci. 255 (2005) 239–253. [18] A. Bejan, Convection heat transfer, 3rd Ed.Wiley, New York, 2004. [19] C.T. Hsu, P. Cheng, Thermal dispersion in a porous medium, Int. J. Heat Mass Transfer 33 (1990) 1587–1597. [20] R. Krichna, J.A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci. 52 (1997) 861–911. [21] D.A. Nield, A. Bejan, Convection in Porous Media, 2nd Ed.Springer-Verlag, New York, 1999. [22] A. Bejan, S. Lorente, The constructal law and the thermodynamics of flow systems with configuration, Int. J. Heat Mass Transfer 47 (2004) 3203–3214. [23] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd Ed.Oxford University Press, London, 1959. [24] C.S. Fen, L.M. Abriola, A comparison of mathematical model formulations for organic vapour transport in porous media, Adv. Water Resources 27 (2004) 1005–1016. [25] J.O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice-Hall PTR, New Jersey, 1999. [26] M.J. SAFI, T.P. Loc, Development of thermal stratification in two dimensional cavity: a numerical study, In. J. Heat Mass Transfer 37 (1994) 2017–2024. [27] M. Khayet, M.P. Godino, J.I. Mengual, Thermal boundary layers in sweeping gas membrane distillation processes, AIChE J. 48 (2002) 1488–1497.
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khayet31.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format

Collections