Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Mathematical analysis and stability of a chemotaxis model with logistic term

dc.contributor.authorTello, J. Ignacio
dc.date.accessioned2023-06-20T09:27:12Z
dc.date.available2023-06-20T09:27:12Z
dc.date.issued2004-11-10
dc.description.abstractIn this paper we study a non-linear system of differential equations arising in chemotaxis. The system consists of a PDE that describes the evolution of a population and an ODE which models the concentration of a chemical substance. We study the number of steady states under suitable assumptions, the existence of one global solution to the evolution problem in terms of weak solutions and the stability of the steady states.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipEuropean Union
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12295
dc.identifier.doi10.1002/mma.528
dc.identifier.issn0170-4214
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1476
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49581
dc.issue.number16
dc.journal.titleMathematical Methods in the Applied Sciences
dc.language.isoeng
dc.page.final1880
dc.page.initial1865
dc.publisherW. Spröβig
dc.relation.projectIDREN 2000/0766
dc.relation.projectIDHPRN-CT-2002-00274
dc.rights.accessRightsopen access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordChemotaxis
dc.subject.keywordStability of stationary solutions
dc.subject.keywordParabolic equations
dc.subject.keywordReinforced random walks
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleMathematical analysis and stability of a chemotaxis model with logistic term
dc.typejournal article
dc.volume.number27
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2005mathematical-1.pdf
Size:
182.7 KB
Format:
Adobe Portable Document Format

Collections