A Bochner type characterization theorem for exceptional orthogonal polynomials
dc.contributor.author | García Ferrero, María Ángeles | |
dc.contributor.author | Gómez-Ullate Oteiza, David | |
dc.contributor.author | Milson, Robert | |
dc.date.accessioned | 2023-06-17T13:20:28Z | |
dc.date.available | 2023-06-17T13:20:28Z | |
dc.date.issued | 2019-04-01 | |
dc.description | ©2018 Elsevier Inc. M.A.G.F. acknowledges the financial support of the Spanish MINECO through a Severo Ochoa FPI scholarship. The work of M.A.G.F. is supported in part by the ERC Starting Grant 633152 and the ICMAT-Severo Ochoa project SEV-2015-0554. The research of D.G.U. has been supported in part by Spanish MINECO-FEDER Grants MTM2012-31714 and MTM2015-65888-C4-3 and by the ICMAT-Severo Ochoa project SEV-2015-0554. The research of the third author (RM) was supported in part by NSERC grant RGPIN-228057-2009. D.G.U. would like to thank Dalhousie University for their hospitality during his visit in the Spring semester of 2014 where many of the results in this paper were obtained. | |
dc.description.abstract | It was recently conjectured that every system of exceptional orthogonal polynomials is related to a classical orthogonal polynomial system by a sequence of Darboux transformations. In this paper we prove this conjecture, which paves the road to a complete classification of all exceptional orthogonal polynomials. In some sense, this paper can be regarded as the extension of Bochner's result for classical orthogonal polynomials to the exceptional class. As a supplementary result, we derive a canonical form for exceptional operators based on a bilinear formalism, and prove that every exceptional operator has trivial monodromy at all primary poles. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea. H2020 | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO)/FEDER | |
dc.description.sponsorship | Instituto de Ciencias Matemáticas (ICMAT)/Severo Ochoa | |
dc.description.sponsorship | NSERC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/51778 | |
dc.identifier.doi | 10.1016/j.jmaa.2018.11.042 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.jmaa.2018.11.042 | |
dc.identifier.relatedurl | https://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/13153 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of mathematical analysis and applications | |
dc.language.iso | eng | |
dc.page.final | 626 | |
dc.page.initial | 584 | |
dc.publisher | Elsevier science | |
dc.relation.projectID | GEOFLUIDS (633152) | |
dc.relation.projectID | (MTM2012-31714; MTM2015-65888-C4-3) | |
dc.relation.projectID | SEV-2015-0554 | |
dc.relation.projectID | RGPIN-228057-2009 | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Shape invariant potentials | |
dc.subject.keyword | Scattering-amplitude | |
dc.subject.keyword | Darboux transformations | |
dc.subject.keyword | Hermite | |
dc.subject.keyword | Zeros | |
dc.subject.keyword | Extensions | |
dc.subject.keyword | Families | |
dc.subject.keyword | Charlier | |
dc.subject.keyword | Meixner | |
dc.subject.keyword | Orthogonal polynomials | |
dc.subject.keyword | Sturm-Liouville problems | |
dc.subject.keyword | Trivial monodromy | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | A Bochner type characterization theorem for exceptional orthogonal polynomials | |
dc.type | journal article | |
dc.volume.number | 472 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 17de85e3-ef03-4749-b8f1-4b1f7673f31c | |
relation.isAuthorOfPublication.latestForDiscovery | 17de85e3-ef03-4749-b8f1-4b1f7673f31c |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- gomez-ullate41postprint+CC(nc_nd)+EMB_01_abr_2021.pdf
- Size:
- 599.77 KB
- Format:
- Adobe Portable Document Format