Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A general fixed-interval smoother with exact initial conditions

dc.contributor.authorCasals Carro, José
dc.contributor.authorSotoca López, Sonia
dc.contributor.authorJerez Méndez, Miguel
dc.date.accessioned2023-06-21T01:37:52Z
dc.date.available2023-06-21T01:37:52Z
dc.date.issued1998
dc.description.abstractIn this work we derive a relationship between tbe exact fixed-interval smoothed moments and those obtained from an arbitrarily initialized smoother. Combining this result witbh a conventional smoother we obtain a new algoritbm with exact initial conditions, that can be applied to stationary, nonstationary or partially nonstationary systems, with deterministic and/or stochastic inputs. Besides an easy analytical derivation, other advantages of this smoother are its computational efficiency and numerical stability.
dc.description.abstractEn este trabajo se deriva la relación existente entre los momentos exactos de un smoother de intervalo fijo y los momentos obtenidos de un smoother inicializado arbitrariamente. Combinando este resultado con un smoother convencional se obtiene un nuevo algoritmo con condiciones iniciales exactas, que puede ser aplicado a sistemas estacionarios, no estacionarios o parcialmente no estacionarios, con inputs deterministas y/o estocásticos. Además de su fácil derivación analítica, otras ventajas de este nuevo smoother son su eficiencia computacional y su estabilidad numérica.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28793
dc.identifier.relatedurlhttp://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64205
dc.issue.number04
dc.language.isoeng
dc.page.total10
dc.publication.placeMadrid
dc.publisherFacultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.keywordState-space models
dc.subject.keywordNonstationarity
dc.subject.keywordStochastic inputs
dc.subject.keywordKalman filter.
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleA general fixed-interval smoother with exact initial conditions
dc.typetechnical report
dc.volume.number1998
dcterms.referencesAnsley, C.F. and Kohn, R. (1985), "Estimation, Filtering and Smoothing in State Space Models with Incompletely Specified Initial Conditions," Annals of Statistics, 13, 1286-1316. Ansley, C.F. and Kohn, R. (1989), "Filtering and Smoothing in State Space Models with Partially Diffuse Initial Conditions," Journal of Time Series Analysis, 11, 4, 275-293. Casals, J. and Sotoca, S. (1997), "Exact Initial Conclitions for Maximum Likelihood Estimation of State Space Models with Stochastic Inputs," Economics Letters, 57, 261-267. Chan, S. W., Goodwin, G.C. and Sin K.S. (1984), "Convergence Properties of the Riccati Difference Equation in Optimal Filtering of Nonstabilizable Systems," IEEE Transactions on Automatic Control, 29, 2, 110-118. De Jong, P. (1988), "The Likelihood for a State Space Model," Biometrika, 75,1, 165-169. De Jong, P. (1989), "Smoothing and Interpolation with the State-Space Model," Journal of the American Statistical Association, 84, 408, 1085-1088. De Jong, P. (1991a), "Stable Algorithms for the State Space Model," Journal of Time Series Analysis, 12, 2, 143-157. De Jong, P. (1991b), "The Diffuse Kalman Filter," Annals of Statistics, 19, 2, 1073-1083. De Jong, P. and Chu-Chun-Lin, S. (1994a), "Stationary and Non-Stationary State Space Models," Journal of Time Series Analysis, 15,2,151-166. De Jong, P., and Chu-Chun-Lin, S. (1994b), "Fast Likelihood Evaluation and Prediction for Nonstationary State Space Models," Biometrika, 81, 1, 133-142. Ionescu, V., Oara, C. and Weiss, M. (1997), "General Matrix Pencil Techniques for the solution of algebraic Riccati Equations: a Unified Approach," IEEE Transactions on Automatic Control, 42, 8. 1085-1097. Kohn, R. and Ansley, C.F. (1986), "Estimation, Prediction, and Interpolation for ARIMA Models with Missing Data," Journal of the American Statistical Association, 81, 751-761. Kohn, R., and Ansley, C.F. (1987), "Signal Extraction for Finite Nonstationary Time Series," Biometrika, 74, 411-421. Kohn, R. and Ansley, C.F. (1989), "A Fast Algorithm for Signal Extraction, Influence and Cross-Validation in State 8pace Models," Biometrika, 76, 65-79. Rosenberg, B.M. (1973), "The Analysis of a Cross Section of Time Series by Stochastically Convergent Parameter Regression," Annals of Economic and Social Measurement, 2, 4, 399-428. Shumway, R.H. and Stoffer, D.S. (1982), "An Approach to Time Series Smoothing and Forecasting Using the EM Algorithm," Journal of Time Series Analysis, 3, 253-264. Swamy, P.A. V.B., and Tavlas, G.S. (1995), "Random Coefficient Models Theory and Applications," Journal of Economic Surveys, 9, 2, 165-196.
dspace.entity.typePublication
relation.isAuthorOfPublication138478db-3f49-41e4-a76e-ff6d03e56bb8
relation.isAuthorOfPublicationfdb804b2-ac97-4a0a-bd74-9414c4b86042
relation.isAuthorOfPublication.latestForDiscovery138478db-3f49-41e4-a76e-ff6d03e56bb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9804.pdf
Size:
255.73 KB
Format:
Adobe Portable Document Format