Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Conductance transient comparative analysis of electron-cyclotron resonance plasma-enhanced chemical vapor deposited SiNx, SiO2/SiNx, and SiOxNy dielectric films on silicon substrates

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T10:44:37Z
dc.date.available2023-06-20T10:44:37Z
dc.date.issued2004-01
dc.description© 2004 The Japan Society of Applied Physics. The authors would like to thank C.A.I. de Implantación Iònica from Complutense University in Madrid for technical assistance with the ECR-PECVD system. This research was partially supported by the Spanish DGESIC under grant nos. TIC 1FD97-2085 and TIC 01/1253.
dc.description.abstractAn interface quality comparative study of metal-insulator-semiconductor (MIS) structures based on SiNx, SiO2/SiNx and SiO(x)Ny dielectric films deposited on silicon substrates by electron-cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) has been carried out. Overall interpretation of deep-level transient spectroscopy (DLTS) and conductance transient (G-t) measurements enables us to conclude that the interface quality of Al/SiOxNy/Si MIS structures is superior to those of Al/SiNx/Si devices. Moreover,. we have proved that thermal treatments applied to Al/SiOxNy/Si capacitors induce defect passivation, possibly related to the presence of hydrogen in the films, and disorder-induced gap-state (DIGS) density maxima can decrease to values even lower than those corresponding to Al/SiNx/SiO2/Si devices.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish DGESIC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26101
dc.identifier.doi10.1143/JJAP.43.66
dc.identifier.issn0021-4922
dc.identifier.officialurlhttp://dx.doi.org/10.1143/JJAP.43.66
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51126
dc.issue.number1
dc.journal.titleJapanese Journal of Applied Physics Part-1: Regular Papers Short Notes & Review Papers
dc.language.isoeng
dc.page.final70
dc.page.initial66
dc.publisherInst. Pure Applied Physics
dc.relation.projectIDTIC 1FD97-2085
dc.relation.projectIDTIC 01/1253
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordInsulator-Semiconductor Structures
dc.subject.keywordInduced Gap States
dc.subject.keywordC-V Curves
dc.subject.keywordQuality
dc.subject.keywordOxide
dc.subject.keywordOxynitride
dc.subject.keywordDevices.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleConductance transient comparative analysis of electron-cyclotron resonance plasma-enhanced chemical vapor deposited SiNx, SiO2/SiNx, and SiOxNy dielectric films on silicon substrates
dc.typejournal article
dc.volume.number43
dcterms.references1) Y. Ma and G. Lucovsky: J. Vac. Sci. Technol. B, 12,(1994) 2504. 2) Y. Ma, T. Yasuda and G. Lucovsky: J. Vac. Sci. Technol. B, 11, (1993) 1533. 3) D. Landheer, Y. Tao, J. E. Hulse, T. Quance and D. X. Xu: J. Electrochem. Soc., 143, (1996) 1681. 4) S. V. Hattangady, H. Niimi and G. Lucovsky: J. Vac. Sci. Technol. A, 14, (1996) 3017. 5) P. K. Shufflebotham, D. J. Thomson and H. C. Card: J. Appl. Phys., 64, (1988) 4398. 6) A. Popov: J. Vac. Sci. Technol. A, 7, (1989) 894. 7) T. T. Chau, S. R. Mejia and K. C. Kao: J. Vac. Sci. Technol. B, 10, (1992) 2170. 8) S. Dueñas, R. Peláez, H. Castán, R. Pinacho, L. Quintanilla, J. Barbolla, I. Mártil and G. González-Díaz: Appl. Phys. Lett., 71, (1997) 826. 9) H. Castán, S. Dueñas, J. Barbolla, E. Redondo, N. Blanco, I. Mártil and G. González-Díaz: Microelectron. Reliab., 40, (2000) 845. 10) H. Castán, S. Dueñas and J. Barbolla: Jpn. J. Appl. Phys., 41, (2002) L1215. 11) W. Bohne, W. Fush, J. Röhrich, B. Selle, I. Sieber, Á. del Prado, E. San Andrés, I. Mártil and G. González-Díaz: Surf. Interface Anal., 34, (2002) 749. 12) Á. del Prado, F. L. Martínez, I. Mártil, G. González-Díaz and M. Fernández: J. Vac. Sci. Technol. A, 17, (1999) 1263. 13) Á. del Prado, I. Mártil, M. Fernández and G. González-Díaz: Thin Solid Films, 343–344, (1999) 437. 14) L. He, H. Hasegawa, T. Sawada and H. Ohno: J. Appl. Phys., 63, (1988) 2120. 15) L. He, H. Hasegawa, T. Sawada and H. Ohno: Jpn. J. Appl. Phys., 27, (1988) 512. 16) E. H. Nicollian and J. R. Brews: MOS Physics and Technology (John Wiley & Sons, New York, 1982), Chap. 8. 17) G.D. Wilk, R.W. Wallace and J.M. Anthony: J. Appl. Phys., 89, (2001) 5243. 18) C. Parker, G. Lucovsky and J. Hauser: IEEE Electron Device Lett., 19, (1998) 106. 19) H. Yang, H. Niimi, J. W. Keister, G. Lucovsky and J. E. Rowe: IEEE Electron Device Lett., 21, (2000) 76. 20) H. Castán, S. Dueñas, J. Barbolla, Á. del Prado, I. Mártil and G. González-Díaz: Jpn. J. Appl. Phys., 42, (2003) 4978.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,47.pdf
Size:
814.47 KB
Format:
Adobe Portable Document Format

Collections