Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Magnetic-Responsive Release Controlled by Hot Spot Effect

Citation

Abstract

Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician's will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 degrees C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices.

Research Projects

Organizational Units

Journal Issue

Description

RESEARCHER ID K-8193-2014 (Alejandro Baeza) ORCID 0000-0002-9042-8865 (Alejandro Baeza) RESEARCHER ID E-8300-2012 (Eduardo Guisasola Cal) ORCID 0000-0002-2549-1745 (Eduardo Guisasola Cal) RESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí) RESEARCHER ID L-6167-2014 (Daniel Arcos Navarrete) ORCID 0000-0002-5367-7272 (Daniel Arcos Navarrete)

Keywords

Collections