Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cloud DEVS-based computation of UAVs trajectories for search and rescue missions

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd
Citations
Google Scholar

Citation

Abstract

This paper presents a new Cloud-deployable DEVS-based framework for optimising UAV trajectories and sensor strategies in target-search missions. DEVS provides it with a well-established, flexible, and verifiable modelling strategy to include different models for the UAV, sensor, and target dynamics; the target and sensor uncertainty; and the optimising process. Its Cloud deployability speeds up the evaluations/simulations required to optimise this NP-hard problem, which involves computationally heavy models when solving real-world missions. The framework, designed to handle different types of target-search missions, currently optimises, using a multi-objective Genetic Algorithm, free-shape trajectories of multiple UAVs,eqquiped with several static/movable sensors to detect a target within a search area. It is implemented in xDEVS and deployable over a set of containers in the Google Cloud Platform. The results show that our deployment policy speeds up the computation up to 3.35 times, letting the operator simultaneously optimise several search strategies for agiven scenario.

Research Projects

Organizational Units

Journal Issue

Description

©2022 Taylor & Francis LTD This work is supported by the Spanish Ministry of Science and Innovation (MICINN) under AMPBAS (RTI2018-098962- B-C21) and by the Madrid Regional Government under IA-GES-BLOOM-CM (Y2020/TCS-6420). The computation has been supported by the Google Cloud Research Credits program with award GCP19980904.

Keywords

Collections