Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cloud DEVS-based computation of UAVs trajectories for search and rescue missions

dc.contributor.authorBordón Ruiz, Juan B.
dc.contributor.authorLópez Orozco, José Antonio
dc.contributor.authorBesada Portas, Eva
dc.date.accessioned2023-06-22T10:42:14Z
dc.date.available2023-06-22T10:42:14Z
dc.date.issued2022-04-05
dc.description©2022 Taylor & Francis LTD This work is supported by the Spanish Ministry of Science and Innovation (MICINN) under AMPBAS (RTI2018-098962- B-C21) and by the Madrid Regional Government under IA-GES-BLOOM-CM (Y2020/TCS-6420). The computation has been supported by the Google Cloud Research Credits program with award GCP19980904.
dc.description.abstractThis paper presents a new Cloud-deployable DEVS-based framework for optimising UAV trajectories and sensor strategies in target-search missions. DEVS provides it with a well-established, flexible, and verifiable modelling strategy to include different models for the UAV, sensor, and target dynamics; the target and sensor uncertainty; and the optimising process. Its Cloud deployability speeds up the evaluations/simulations required to optimise this NP-hard problem, which involves computationally heavy models when solving real-world missions. The framework, designed to handle different types of target-search missions, currently optimises, using a multi-objective Genetic Algorithm, free-shape trajectories of multiple UAVs,eqquiped with several static/movable sensors to detect a target within a search area. It is implemented in xDEVS and deployable over a set of containers in the Google Cloud Platform. The results show that our deployment policy speeds up the computation up to 3.35 times, letting the operator simultaneously optimise several search strategies for agiven scenario.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN) /FEDER
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipGoogle Cloud Research Credits program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72145
dc.identifier.doi10.1080/17477778.2022.2053311
dc.identifier.issn1747-7778
dc.identifier.officialurlhttp://dx.doi.org/10.1080/17477778.2022.2053311
dc.identifier.relatedurlhttps://www.tandfonline.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71440
dc.journal.titleJournal of simulation
dc.language.isoeng
dc.publisherTaylor & Francis Ltd
dc.relation.projectIDAMPBAS (RTI2018-098962- B-C21)
dc.relation.projectIDIA-GES-BLOOM-CM (Y2020/TCS-6420)
dc.relation.projectIDGCP19980904
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.cdu004.8
dc.subject.keywordUnmanned aerial vehicles
dc.subject.keywordCooperative-search
dc.subject.keywordGenetic algorithm
dc.subject.keywordSimulation
dc.subject.keywordOptimization
dc.subject.keywordFramework
dc.subject.keywordSurveillance
dc.subject.keywordModel
dc.subject.keywordfire
dc.subject.keywordair
dc.subject.keywordSimulation in cloud
dc.subject.keywordDiscrete event system specification
dc.subject.keywordModel-Based systems engineering
dc.subject.keywordBayesian search
dc.subject.keywordMulti-objective path planning
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleCloud DEVS-based computation of UAVs trajectories for search and rescue missions
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication26b95994-f79c-4d7c-8de5-a003d6d2a770
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication.latestForDiscovery26b95994-f79c-4d7c-8de5-a003d6d2a770

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
besadaportas Postprint+EMB 05-abr-2023+CC-nc.pdf
Size:
3.4 MB
Format:
Adobe Portable Document Format

Collections