Moduli space of principal sheaves over projective varieties
dc.contributor.author | Sols Lucía, Ignacio | |
dc.contributor.author | Gómez, Tomás L. | |
dc.date.accessioned | 2023-06-20T10:33:37Z | |
dc.date.available | 2023-06-20T10:33:37Z | |
dc.date.issued | 2005-03 | |
dc.description.abstract | Let G be a connected reductive group. The late Ramanathan gave a notion of (semi)stable principal G-bundle on a Riemann surface and constructed a projective moduli space of such objects. We generalize Ramanathan's notion and construction to higher dimension, allowing also objects which we call semistable principal G-sheaves, in order to obtain a projective moduli space: a principal G-sheaf on a projective variety X is a triple (P, E, psi), where E is a torsion free sheaf on X, P is a principal G-bundle on the open set U where E is locally free and psi is an isomorphism between E vertical bar(U) and the vector bundle associated to P by the adjoint representation. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20368 | |
dc.identifier.doi | 10.4007/annals.2005.161.1037 | |
dc.identifier.issn | 0003-486X | |
dc.identifier.officialurl | http://0-annals.math.princeton.edu.cisne.sim.ucm.es/wp-content/uploads/annals-v161-n2-p11.pdf | |
dc.identifier.relatedurl | http://0-annals.math.princeton.edu.cisne.sim.ucm.es/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50519 | |
dc.issue.number | 2 | |
dc.journal.title | Annals of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 1092 | |
dc.page.initial | 1037 | |
dc.publisher | Princeton University | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Compact riemann surface | |
dc.subject.keyword | Unitary vector bundles | |
dc.subject.keyword | Algebraic-curves | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Moduli space of principal sheaves over projective varieties | |
dc.type | journal article | |
dc.volume.number | 161 | |
dcterms.references | B. ANCHOUCHE and I. BISWAS, Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math. 123 (2001), 207–228. A. BOREL and J. TITS, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150. A. GROTHENDIECK, Technique de descente et théorèmes d'existence en géométrie algébrique (Bourbaki exposés 190, 195, 212, 221, 232 and 236); Also in Fondements de la Géométrie Algébrique, Secrétariat Mathematique, Paris (1962). A. GROTHENDIECK, Étude cohomologique des faisceaux cohérents, Publ. Math. IHES 11 (1961); and 17 (1963). A. GROTHENDIECK, Étude locale des schémas et des morphismes de schémas, Publ. Math. IHES 20 (1964); 24 (1965); 28 (1966); and 32 (1967). R. FRIEDMAN and J. W. MORGAN, Holomorphic principal bundles over elliptic curves II: The parabolic construction, J. Differential Geom. 56 (2000), 301–379. D. GIESEKER, On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1977), 45–60. T. GÓMEZ and I. SOLS, Stability of conic bundles, Internat. J. Math. 11 (2000), 1027–1055. T. GÓMEZ and I. SOLS, Stable tensors and moduli space of orthogonal sheaves, preprint, 2001; math.AG/0103150. T. GÓMEZ and I. SOLS, Projective moduli space of semistable principal sheaves for a reductive group (Conference in honor of Silvio Greco (April, 2001)), Le Matematiche 15 (2000), 437–446. R. HARTSHORNE, Algebraic Geometry, Grad. Texts in Math. 52, Springer-Verlag, New York, s1977. R. HARTSHORNE, Stable reflexive sheaves, Math. Ann. 254 (1980), 121–176. J. E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer-Verlag, New York, 1972. D. HUYBRECHTS and M. LEHN, The geometry of moduli spaces of sheaves, Aspects of Mathematics E31, Vieweg, Braunschweig, 1997. D. HYEON, Principal bundles over a projective scheme, Trans. Amer. Math. Soc. 354 (2002), 1899–1908. N. JACOBSON, Lie Algebras, Dover, New York, 1979. M. MARUYAMA, Moduli of stable sheaves, I and II, J. Math. Kyoto Univ. 17 (1977), 91–126; 18 (1978), 557–614. D. MUMFORD, Geometric invariant theory, Ergeb. der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, New York, 1965. D. MUMFORD, Abelian Varieties, Oxford Univ. Press, Bombay, 1970. M. S. NARASIMHAN and C. S. SESHADRI, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540–567. A. RAMANATHAN, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129–152. A. RAMANATHAN, Moduli for principal bundles. Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), 527–533, Lecture Notes in Math. 732, Springer-Verlag New York, 1979. A. RAMANATHAN, Moduli for principal bundles over algebraic curves: I and II, Proc. Indian Acad. Sci. (Math. Sci.) 106 (1996), 301–328, and 421–449. R. RICHARDSON, Compact real forms of a complex semi-simple Lie algebra, J. Differential Geom. 2 (1968), 411–419. A. SCHMITT, Singular principal bundles over higher-dimensional manifolds and their moduli spaces, Internat. Math. Res. Notices 23 (2002), 1183–1210. J-P. SERRE, Espaces fibrés algébriques, Séminaire C. Chevalley, ENS, Paris (1958). J-P. SERRE, Lie Algebras and Lie Groups, 1964 Lectures given at Harvard University, W. A. Benjamin Inc., New York, 1965; Springer-Verlag, New York, 1992. C. S. SESHADRI, Space of unitary vector bundles on a compact Riemann surface, Ann. of Math. 85 (1967), 303–336. A. GROTHENDIECK and M. RAYNAUD, Revêtements étales et Groupe Fondemental, Lecture Notes in Math. 224, Springer-Verlag, New York (1971). M. ARTIN, A. GROTHENDIECK, and J. L. VERDIER, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Springer-Verlag, New York (1972). C. SIMPSON, Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. I.H.E.S. 79 (1994), 47–129. E. H. SPANIER, Algebraic Topology, Corrected reprint, Springer-Verlag, New York, 1981. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6d35def4-3d5f-4978-800f-82b7edf76b5d | |
relation.isAuthorOfPublication.latestForDiscovery | 6d35def4-3d5f-4978-800f-82b7edf76b5d |
Download
Original bundle
1 - 1 of 1