Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

An ARMA representation of unobserved component models under generalized random walk specifications: new algorithms and examples

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2002

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Instituto Complutense de Análisis Económico. Universidad Complutense de Madrid
Citations
Google Scholar

Citation

Abstract

Among the alternative Unobserved Components formulations within the stochastic state space setting, the Dynamic Harmonic Regression (DHR) has proved particularly useful for adaptive seasonal adjustment signal extraction, forecasting and back-casting of time series. Here, we show first how to obtain ARMA representations for the Dynamic Harmonic Regression (DHR) components under several random walk specifications. Later, we uses these theoretical results to derive an alternative algorithm based on the frequency domain for the identification and estimation of DHR models. The main advantages of this algorithm are linearity, fast computing, avoidance of some numerical issues, and automatic identification of the DHR model. To compare it with other alternatives, empirical applications are provided.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords