Model Selection for independent not identically distributed observations based on Rényi's pseudodistances
dc.contributor.author | Felipe Ortega, Ángel | |
dc.contributor.author | Jaenada Malagón, María | |
dc.contributor.author | Miranda Menéndez, Pedro | |
dc.contributor.author | Pardo Llorente, Leandro | |
dc.date.accessioned | 2023-06-22T12:52:32Z | |
dc.date.available | 2023-06-22T12:52:32Z | |
dc.date.issued | 2023-04-11 | |
dc.description.abstract | Model selection criteria are rules used to select the best statistical model among a set of candidate models, striking a trade-off between goodness of fit and model complexity. Most popular model selection criteria measure the goodness of fit trough the model log-likelihood function, yielding to non-robust criteria. This paper presents a new family of robust model selection criteria for independent but not identically distributed observations (i.n.i.d.o.) based on the Rényi's pseudodistance (RP). The RP-based model selection criterion is indexed with a tuning parameter α controlling the trade-off between efficiency and robustness. Some theoretical results about the RP criterion are derived and the theory is applied to the multiple linear regression model, obtaining explicit expressions of the model selection criterion. Moreover, restricted models are considered and explicit expressions under the multiple linear regression model with nested models are accordingly derived. Finally, a simulation study empirically illustrates the robustness advantage of the method. | |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (España) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/77633 | |
dc.identifier.citation | Felipe A, Jaenada M, Miranda P, Pardo L. Model Selection for independent not identically distributed observations based on Rényi’s pseudodistances. Journal of Computational and Applied Mathematics 2024; 440: 115630. [DOI: 10.1016/j.cam.2023.115630] | |
dc.identifier.officialurl | https://doi.org/10.1016/j.cam.2023.11563 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/73280 | |
dc.language.iso | eng | |
dc.relation.projectID | PID2021-124933NB-I00 | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.cdu | 519.22 | |
dc.subject.keyword | Rényi’s pseudodistance | |
dc.subject.keyword | Robustness | |
dc.subject.keyword | Restricted model | |
dc.subject.keyword | Multiple linear regression model | |
dc.subject.ucm | Estadística matemática (Matemáticas) | |
dc.subject.unesco | 1209 Estadística | |
dc.title | Model Selection for independent not identically distributed observations based on Rényi's pseudodistances | |
dc.type | journal article | |
dcterms.references | [1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csáki (Eds.), 2nd international symposium on information theory (pp. 267–281). Budapest, Hungary: Akadémia Kiadó. [2] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716–723. [3] Basu, A., Harris I. R. , Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85 (3), 549–559. [4] Basu, A., Mandal, A., Martín, N. and Pardo, L. (2018). Testing composite hypothesis based on density power divergence. Sankhya, 80 (13), 222–262. [5] Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345–370. [6] Broniatowski, M., Toma, A. and Vajda, I. (2012). Decomposable pseudodistances and applications in statistical estimation. Journal of Statistical Planning and Inference, 142, 2574–2585. [7] Castilla, E., Jaenada, M. and Pardo, L. (2022). Estimation and testing on independent not identically distributed observations based on Rényi’s pseudodistances. IEEE Transactions on Information Theory, 68, 7, 4588–4609. [8] Castilla, E., Jaenada, M., Martín, N. and Pardo, L. (2023). Robust approach for comparing two dependent normal populations through Waldtype tests based on rényi’s pseudodistance estimators. Statistics and Computing, DOI: 10.1007/s11222-022-10162-7. [9] Cavanaugh, J. E. and Neath, A. A. (2011). Akaike’s Information Criterion: Background, Derivation, Properties, and Refinements. International Encyclopedia of Statistical Science, 26–29. doi:10.1007/978-3-642-04898-2 111. [10] Dik, J. J. and Gunst, M. C. M. (1985). The distribution of general quadratic forms in normal variables. Statistica Neerlandica, 39, 14–26. [11] Draper, N.R. and Smith, H. (1981). Applied Regression Analysis, 2nd ed. Wiley Blackwell. Hoboken, NJ (USA). [12] Fujisawa, H. and Eguchi, S. (2008). Robust parameter estimation with a small bias agains theavy contamination. Journal of Multivariate Analysis, 99, 2053–2081. [13] Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307. [14] Hurvich, C. M. and Tsai, C. L. (1993). A corrected Akaike information criterion for vector autoregressive model selection. Journal of Time Series Analysis, 14, 271–279. [15] Hurvich, C. M. and Tsai, C. L. (1995). Model selection for extended quasi–likelihood models in small samples. Biometrics, 51, 1077–1084. [16] Jaenada, M., Miranda, P. and Pardo, L. (2022). Robust tests Statistics based on restricted minimum Rényi Pseudodistance estimators. Entropy, 24, 616. [17] Jaenada, M. and Pardo, L. (2022). Robust Statistical Inference in Generalized Linear Models based on minimum Rényi Pseudodistance estimators. Entropy, 24, 123. [18] Jones, M. C., Hjort, N. L., Harris, I. R. and Basu, A. (2001). A comparison of related density-based minimum divergence estimators. Biometrika, 88, 865–873. [19] Konishi, S. and Kitagawa, G. (1996). Generalised information criteria in model selection. Biometrika, 83, 875–890. [20] Kullback, S. and Leibler, R.A. (1951). On Information and Sufficiency. Annals of Mathematical Statistics, 22 (1), 79–86. [21] Kurata, S. and Hamada, E. (2018). A robust generalization and asymptotic properties of the model selection criterion family. Communication In Statistics (Theory and Methods), 47, 3, 532-547. [22] Mattheou, K., Lee, S. and Karagrigoriou, A. (2009). A model selection criterion based on the BHHJ measure of divergence. Journal of Statististical Planning and Inference, 139, 228–235. [23] Rao, C. R. and Wu, Y. (2001). On model Selection. IMS Lectures Notes. Monograph Series, 312, 1-57. [24] Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6 (2), 461-–464. [25] Takeuchi, K. (1976). Distribution of information statistics and criteria for adequacy of models. Math. Sci., 153, 12-18 (In Japanese). [26] Toma, A., Karagrigoriou, A., and Trentou, P. (2020). Robust model selection criteria based on pseudodistances. Entropy, 22(3), 304. [27] Toma, A. and Leoni-Auban, S. (2010). Robust tests based on dual divergence estimators and saddle points approximation. Journal of Multivariate Analysis, 101, 1143–1155. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 72ddce0d-fbc4-4233-800c-cbd2cc36a012 | |
relation.isAuthorOfPublication | 931cc892-86a0-4d44-9343-7b54535c00a2 | |
relation.isAuthorOfPublication | d940fcaa-13c3-4bad-8198-1025a668ed71 | |
relation.isAuthorOfPublication | a6409cba-03ce-4c3b-af08-e673b7b2bf58 | |
relation.isAuthorOfPublication.latestForDiscovery | 72ddce0d-fbc4-4233-800c-cbd2cc36a012 |