Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant

Loading...
Thumbnail Image

Full text at PDC

Publication date

1995

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific PublCo
Citations
Google Scholar

Citation

Abstract

Let (p/q,n) be the 3-orbifold with base S3 and singular set the 2-bridge knot determined by the rational number p/q, with p and q odd and co-prime, and with cone angle 2π/n along the knot. In this paper the authors are interested in when the orbifolds (p/q,n) are hyperbolic and arithmetic. Using characterization theorems for identifying arithmetic Kleinian groups, the authors develop an algorithmic method for determining when the orbifolds (p/q,n) are arithmetic. This is achieved by using the special recursive nature for the presentation of a 2-bridge knot group to construct the representation variety for the fundamental group of the underlying 2-bridge knot. The same argument applies to 2-bridge links with the same cone angle along each component.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections