On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Lozano Imízcoz, María Teresa | |
dc.contributor.author | Montesinos Amilibia, José María | |
dc.date.accessioned | 2023-06-20T18:47:37Z | |
dc.date.available | 2023-06-20T18:47:37Z | |
dc.date.issued | 1995 | |
dc.description.abstract | Let (p/q,n) be the 3-orbifold with base S3 and singular set the 2-bridge knot determined by the rational number p/q, with p and q odd and co-prime, and with cone angle 2π/n along the knot. In this paper the authors are interested in when the orbifolds (p/q,n) are hyperbolic and arithmetic. Using characterization theorems for identifying arithmetic Kleinian groups, the authors develop an algorithmic method for determining when the orbifolds (p/q,n) are arithmetic. This is achieved by using the special recursive nature for the presentation of a 2-bridge knot group to construct the representation variety for the fundamental group of the underlying 2-bridge knot. The same argument applies to 2-bridge links with the same cone angle along each component. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22198 | |
dc.identifier.doi | 10.1142/S0218216595000053 | |
dc.identifier.issn | 0218-2165 | |
dc.identifier.officialurl | http://www.worldscientific.com/doi/abs/10.1142/S0218216595000053 | |
dc.identifier.relatedurl | http://www.worldscientific.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58634 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Knot Theory and Its Ramifications | |
dc.page.final | 114 | |
dc.page.initial | 81 | |
dc.publisher | World Scientific PublCo | |
dc.relation.projectID | PB89–0105 | |
dc.relation.projectID | PB92–0236. | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | orbifold | |
dc.subject.keyword | singular set | |
dc.subject.keyword | two bridge knot | |
dc.subject.keyword | algebraic curve | |
dc.subject.keyword | knot invariant | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant | |
dc.type | journal article | |
dc.volume.number | 4 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |