Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Blow-up under oscillatory boundary conditions

Loading...
Thumbnail Image

Full text at PDC

Publication date

1994

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOS Press
Citations
Google Scholar

Citation

Abstract

The object of this paper is the study of blowing-up phenomena for the initial-boundary value problem (Pa): ut=uxx+δeu for (x,t)∈(0,1)×(0,+∞), u(0,t)=asinωt and u(1,t)=0 for t∈[0,+∞), u(x,0)=u0(x) for x∈(0,1), where u0(x) is a continuous and bounded function, and a>0, ω>0 are real constants. It is known that if the amplitude a=0 in the oscillatory boundary condition above then there exists a critical parameter δFK (the so-called Frank-Kamenetskiĭ parameter) such that if δ<δFK the corresponding Cauchy-Dirichlet problem (P0) is globally solvable for suitable choices of u0(x), and each solution of (P0) blows up in a finite time if δ>δFK. The authors prove existence of a parameter δ(a,ω)≤δFK with similar critical properties. The essential part of the paper is devoted to the study of the asymptotic behavior of δ(a,ω) with respect to a and ω. For example, δ(a,ω)∼δFK as a→0 uniformly in ω. Further, the exact dependence of δ(a,ω) on the data in (Pa) is shown in the remaining limiting cases for a and ω.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections