Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Blow-up under oscillatory boundary conditions

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorLacey, Andrew A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T18:49:35Z
dc.date.available2023-06-20T18:49:35Z
dc.date.issued1994
dc.description.abstractThe object of this paper is the study of blowing-up phenomena for the initial-boundary value problem (Pa): ut=uxx+δeu for (x,t)∈(0,1)×(0,+∞), u(0,t)=asinωt and u(1,t)=0 for t∈[0,+∞), u(x,0)=u0(x) for x∈(0,1), where u0(x) is a continuous and bounded function, and a>0, ω>0 are real constants. It is known that if the amplitude a=0 in the oscillatory boundary condition above then there exists a critical parameter δFK (the so-called Frank-Kamenetskiĭ parameter) such that if δ<δFK the corresponding Cauchy-Dirichlet problem (P0) is globally solvable for suitable choices of u0(x), and each solution of (P0) blows up in a finite time if δ>δFK. The authors prove existence of a parameter δ(a,ω)≤δFK with similar critical properties. The essential part of the paper is devoted to the study of the asymptotic behavior of δ(a,ω) with respect to a and ω. For example, δ(a,ω)∼δFK as a→0 uniformly in ω. Further, the exact dependence of δ(a,ω) on the data in (Pa) is shown in the remaining limiting cases for a and ω.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipClCYT Grant
dc.description.sponsorshipEEC Contract
dc.description.sponsorshipSERC Grant
dc.description.sponsorshipEEC Contract
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22683
dc.identifier.doi10.3233/ASY-1994-9101
dc.identifier.issn0921-7134
dc.identifier.officialurlhttp://iospress.metapress.com/content/p147v4682jl73130/
dc.identifier.relatedurlhttp://www.iospress.nl/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58712
dc.issue.number1
dc.journal.titleAsymptotic Analysis
dc.language.isoeng
dc.page.final22
dc.page.initial1
dc.publisherIOS Press
dc.relation.projectIDPB90-0235
dc.relation.projectIDSC1-0019-C
dc.relation.projectIDGR/D/73096
dc.relation.projectIDSC1-0019-C
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.cdu539.2
dc.subject.keywordBlow-up
dc.subject.keywordoscillatory boundary conditions
dc.subject.keywordFrank-Kamenetskii parameter
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleBlow-up under oscillatory boundary conditions
dc.typejournal article
dc.volume.number9
dcterms.referencesH. Bellout, A criterion for blow-up of solutions to semilinear heat equations, SIAM J. Math. Anal. 18 (1987) 722-727. J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Applied Mathematical Sciencies Vol. 83 (Springer-Verlag, Berlin, 1989). A Friedman, Blow-up of solutions of nonlinear parabolic equations, in: W.M. Ni et al., eds., Nonlinear Diffusion Equations and Their Equilibrium States I (Springer-Verlag, Berlin, 1988) 301-318 I.M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Trans. 29 (1963) 295-381. M.A Herrero and J.J.L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic problems, Ann. Inst. Poincaré 10 (2) (1993) 131-189. M.A Herrero and J.J.L. Velázquez, Blow-up profiles in one-dimensional, semilinear parabolic problems, Comm. PDE 17 (182) (1992) 205-219. A.A. Lacey, Mathematical analysis of thermal runaway for spatially inhomogeneous reactions, SIAM J. Appl. Math. 43 (1983) 1350-1366. A.A. Lacey, The form of blow up for nonlinear parabolic equations, Proc. Roy. Soc. Edinburgh 98A (1984) 183-202. A. Liñán and F.A Williams, Theory of ignition of a reactive solid by constant energy flux, Comb. Sci. Tech. J. 3 (1971) 91-98. A Liñán and F.A Williams, Ignition of a reactive solid exposed to a step in surface temperature, SIAM J. Appl. Math. 36 (1979) 587-603.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero77.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format

Collections