Blow-up under oscillatory boundary conditions
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Lacey, Andrew A. | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T18:49:35Z | |
dc.date.available | 2023-06-20T18:49:35Z | |
dc.date.issued | 1994 | |
dc.description.abstract | The object of this paper is the study of blowing-up phenomena for the initial-boundary value problem (Pa): ut=uxx+δeu for (x,t)∈(0,1)×(0,+∞), u(0,t)=asinωt and u(1,t)=0 for t∈[0,+∞), u(x,0)=u0(x) for x∈(0,1), where u0(x) is a continuous and bounded function, and a>0, ω>0 are real constants. It is known that if the amplitude a=0 in the oscillatory boundary condition above then there exists a critical parameter δFK (the so-called Frank-Kamenetskiĭ parameter) such that if δ<δFK the corresponding Cauchy-Dirichlet problem (P0) is globally solvable for suitable choices of u0(x), and each solution of (P0) blows up in a finite time if δ>δFK. The authors prove existence of a parameter δ(a,ω)≤δFK with similar critical properties. The essential part of the paper is devoted to the study of the asymptotic behavior of δ(a,ω) with respect to a and ω. For example, δ(a,ω)∼δFK as a→0 uniformly in ω. Further, the exact dependence of δ(a,ω) on the data in (Pa) is shown in the remaining limiting cases for a and ω. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | ClCYT Grant | |
dc.description.sponsorship | EEC Contract | |
dc.description.sponsorship | SERC Grant | |
dc.description.sponsorship | EEC Contract | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22683 | |
dc.identifier.doi | 10.3233/ASY-1994-9101 | |
dc.identifier.issn | 0921-7134 | |
dc.identifier.officialurl | http://iospress.metapress.com/content/p147v4682jl73130/ | |
dc.identifier.relatedurl | http://www.iospress.nl/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58712 | |
dc.issue.number | 1 | |
dc.journal.title | Asymptotic Analysis | |
dc.language.iso | eng | |
dc.page.final | 22 | |
dc.page.initial | 1 | |
dc.publisher | IOS Press | |
dc.relation.projectID | PB90-0235 | |
dc.relation.projectID | SC1-0019-C | |
dc.relation.projectID | GR/D/73096 | |
dc.relation.projectID | SC1-0019-C | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.956.4 | |
dc.subject.cdu | 539.2 | |
dc.subject.keyword | Blow-up | |
dc.subject.keyword | oscillatory boundary conditions | |
dc.subject.keyword | Frank-Kamenetskii parameter | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Blow-up under oscillatory boundary conditions | |
dc.type | journal article | |
dc.volume.number | 9 | |
dcterms.references | H. Bellout, A criterion for blow-up of solutions to semilinear heat equations, SIAM J. Math. Anal. 18 (1987) 722-727. J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Applied Mathematical Sciencies Vol. 83 (Springer-Verlag, Berlin, 1989). A Friedman, Blow-up of solutions of nonlinear parabolic equations, in: W.M. Ni et al., eds., Nonlinear Diffusion Equations and Their Equilibrium States I (Springer-Verlag, Berlin, 1988) 301-318 I.M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Trans. 29 (1963) 295-381. M.A Herrero and J.J.L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic problems, Ann. Inst. Poincaré 10 (2) (1993) 131-189. M.A Herrero and J.J.L. Velázquez, Blow-up profiles in one-dimensional, semilinear parabolic problems, Comm. PDE 17 (182) (1992) 205-219. A.A. Lacey, Mathematical analysis of thermal runaway for spatially inhomogeneous reactions, SIAM J. Appl. Math. 43 (1983) 1350-1366. A.A. Lacey, The form of blow up for nonlinear parabolic equations, Proc. Roy. Soc. Edinburgh 98A (1984) 183-202. A. Liñán and F.A Williams, Theory of ignition of a reactive solid by constant energy flux, Comb. Sci. Tech. J. 3 (1971) 91-98. A Liñán and F.A Williams, Ignition of a reactive solid exposed to a step in surface temperature, SIAM J. Appl. Math. 36 (1979) 587-603. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1