Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

A zero-one half law for porosity of measures

dc.contributor.authorMera Rivas, María Eugenia
dc.contributor.authorMorán Cabré, Manuel
dc.date.accessioned2023-06-21T01:36:24Z
dc.date.available2023-06-21T01:36:24Z
dc.date.issued2000
dc.description.abstractWe prove that the upper porosity of any Radon probability measure is either 0 or 1/2
dc.description.departmentDecanato
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27275
dc.identifier.issn2255-5471
dc.identifier.relatedurlhttps://economicasyempresariales.ucm.es/working-papers-ccee
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64137
dc.issue.number10
dc.language.isoeng
dc.page.total17
dc.publication.placeMadrid
dc.publisherFacultad de Ciencias Económicas y Empresariales. Decanato
dc.relation.ispartofseriesDocumentos de Trabajo de la Facultad de Ciencias Económicas y Empresariales
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.keywordDoubling condition
dc.subject.keywordPorosity of sets
dc.subject.keywordPorosity of measures
dc.subject.keywordTangent measures.
dc.subject.ucmProbabilidades (Matemáticas)
dc.titleA zero-one half law for porosity of measures
dc.typetechnical report
dc.volume.number2000
dcterms.referencesCoifmann, R.R. and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lectures Notes in Math. vol. 242 (1971), Springer-Verlag. Federer, H., Geometric Measure Theory (1969), Springer Verlag. Eckmann, J.P., E. Järvenpää and M. Järvenpää, Porosities and Dimensions of Measures, Nonlinearity 13 (2000), 1-18. Guzmán, M. de, Differentiation of Integrals in IRn, Lectures Notes in Math. Vol. 481 (1975), Springer-Verlag. Mattila, P., Geometry of sets and measures in Euclidean spaces (1995), Cambridge University Press. Preiss, D., Geometry of mensures in IRn, Ann. of Math.,(2) 125 (1987), 537-643. Salli, A., On the Minkowski dimension of strongly porous fractal sets in IRn, Proc. London Math. Soc, (3) 62 (1991), 353-372. Thomson, B.S., Real Functions, Lectures Notes in Math, vol. 1170 (1985), Springer-Verlag. Zajicek, L., Porosity and o-porosity, Real Analysis Exchange, 13 (1987-88), 314-350.
dspace.entity.typePublication
relation.isAuthorOfPublication71245121-5334-43ae-92e3-eb84a42790e8
relation.isAuthorOfPublication36e295dc-70b7-4ede-868c-a83357a04413
relation.isAuthorOfPublication.latestForDiscovery71245121-5334-43ae-92e3-eb84a42790e8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0010.pdf
Size:
409.04 KB
Format:
Adobe Portable Document Format