Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Krull dimension of rings of continuous semialgebraic functions

dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2023-06-19T14:57:54Z
dc.date.available2023-06-19T14:57:54Z
dc.date.issued2015
dc.description.abstractLet R be a real closed field, S(M) the ring of continuous semialgebraic functions on a semialgebraic set M subset of R-m and S* (M) its subring of continuous semialgebraic functions that are bounded with respect to R. In this work we introduce semialgebraic pseudo-compactifications of M and the semialgebraic depth of a prime ideal p of S(M) in order to provide an elementary proof of the finiteness of the Krull dimensions of the rings S(M) and S* (M) for an arbitrary semialgebraic set M. We are inspired by the classical way to compute the dimension of the ring of polynomial functions on a complex algebraic set without involving the sophisticated machinery of real spectra. We show dim(S(M)) = dim(S* (M)) = dim(M) and prove that in both cases the height of a maximal ideal corresponding to a point p is an element of M coincides with the local dimension of M at p. In case p is a prime z-ideal of S(M), its semialgebraic depth coincides with the transcendence degree of the real closed field qf(S(M)/p) over R
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGAAR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34811
dc.identifier.doi10.4171/RMI/852
dc.identifier.issn0213-2230
dc.identifier.officialurlhttp://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=31&iss=3&rank=1
dc.identifier.relatedurlhttp://arxiv.org/abs/1306.4109v1
dc.identifier.relatedurlhttp://www.ems-ph.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34973
dc.issue.number3
dc.journal.titleRevista Matemática Iberoamericana
dc.language.isoeng
dc.page.final766
dc.page.initial753
dc.publisherUniversidad Autónoma Madrid
dc.relation.projectIDMTM2011-22435
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordSemialgebraic function
dc.subject.keywordbounded semialgebraic function
dc.subject.keywordz-ideal
dc.subject.keywordsemialgebraic depth
dc.subject.keywordKrull dimension
dc.subject.keywordlocal dimension
dc.subject.keywordtranscendence degree
dc.subject.keywordreal closed ring
dc.subject.keywordreal closed field
dc.subject.keywordreal closure of a ring
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the Krull dimension of rings of continuous semialgebraic functions
dc.typejournal article
dc.volume.number31
dcterms.referencesJ. Atiyah, I.G. MacDonald: Introduction to Commutative Algebra. Addison–Wesley Publishing Co., Inc., Reading, Mass.-London: 1969. J. Bochnak, M. Coste, M.-F. Roy: Real algebraic geometry. Ergeb. Math. 36, Springer-Verlag, Berlin: 1998. M. Carral, M. Coste: Normal spectral spaces and their dimensions. J. Pure Appl. Algebra 30 (1983), 227-235. G.L. Cherlin, M.A. Dickmann: Real closed rings. I. Residue rings of rings of continuous functions. Fund. Math. 126 (1986), no. 2, 147–183. G.L. Cherlin, M.A. Dickmann: Real closed rings. II. Model theory. Ann. Pure Appl. Logic 25 (1983), no. 3, 213–231. H. Delfs, M. Knebusch: Separation, Retractions and homotopy extension in semialgebraic spaces. Pacific J. Math. 114 (1984), no. 1, 47–71. H. Delfs, M. Knebusch: Locally semialgebraic spaces. Lecture Notes in Mathematics, 1173. SpringerVerlag, Berlin: 1985. J.M. Gamboa: On prime ideals in rings of semialgebraic functions. Proc. Amer. Math. Soc. 118 (1993), no. 4, 1034–1041. J.M. Gamboa, J.M. Ruiz: On rings of semialgebraic functions. Math. Z. 206 (1991) no. 4, 527–532. L. Gillman, M. Jerison: Rings of continuous functions. The Univ. Series in Higher Nathematics 1, D. Van Nostrand Company, Inc.: 1960. A. Prestel, N. Schwartz: Model theory of real closed rings. Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999), 261–290, Fields Inst. Commun., 32, Amer. Math. Soc., Providence, RI, 2002. N. Schwartz: Real closed rings. Habilitationsschrift, München: 1984. N. Schwartz: Real closed rings. Algebra and order (Luminy-Marseille, 1984), 175–194, Res. Exp. Math., 14, Heldermann, Berlin: 1986. N. Schwartz: The basic theory of real closed spaces. Mem. Amer. Math. Soc. 77 (1989), no. 397, viii + 122 pp. N. Schwartz: Rings of continuous functions as real closed rings. Ordered algebraic structures (Cura¸cao, 1995), 277–313, Kluwer Acad. Publ., Dordrecht: 1997. N. Schwartz: Epimorphic extensions and Prüfer extensions of partially ordered rings. Manuscripta Math. 102 (2000), 347-381. N. Schwartz, J.J. Madden: Semi-algebraic function rings and reflectors of partially ordered rings. Lecture Notes in Mathematics, 1712. Springer-Verlag, Berlin: 1999. xii+279 pp. N. Schwartz, M. Tressl: Elementary properties of minimal and maximal points in Zariski spectra. J. Algebra 323 (2010), no. 3, 698–728. M. Tressl: The real spectrum of continuous definable functions in o-minimal structures. S´eminaire de Structures Algébriques Ordonnées 1997-1998, 68, Mars 1999, p. 1-15. M. Tressl: Super real closed rings. Fund. Math. 194 (2007), no. 2, 121–177. M. Tressl: Bounded super real closed rings. Logic Colloquium 2007, 220–237, Lect. Notes Log., 35, Assoc. Symbol. Logic, La Jolla, CA, 2010.
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fernando105.pdf
Size:
191.89 KB
Format:
Adobe Portable Document Format

Collections