On the Krull dimension of rings of continuous semialgebraic functions
dc.contributor.author | Fernando Galván, José Francisco | |
dc.contributor.author | Gamboa Mutuberria, José Manuel | |
dc.date.accessioned | 2023-06-19T14:57:54Z | |
dc.date.available | 2023-06-19T14:57:54Z | |
dc.date.issued | 2015 | |
dc.description.abstract | Let R be a real closed field, S(M) the ring of continuous semialgebraic functions on a semialgebraic set M subset of R-m and S* (M) its subring of continuous semialgebraic functions that are bounded with respect to R. In this work we introduce semialgebraic pseudo-compactifications of M and the semialgebraic depth of a prime ideal p of S(M) in order to provide an elementary proof of the finiteness of the Krull dimensions of the rings S(M) and S* (M) for an arbitrary semialgebraic set M. We are inspired by the classical way to compute the dimension of the ring of polynomial functions on a complex algebraic set without involving the sophisticated machinery of real spectra. We show dim(S(M)) = dim(S* (M)) = dim(M) and prove that in both cases the height of a maximal ideal corresponding to a point p is an element of M coincides with the local dimension of M at p. In case p is a prime z-ideal of S(M), its semialgebraic depth coincides with the transcendence degree of the real closed field qf(S(M)/p) over R | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | GAAR | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/34811 | |
dc.identifier.doi | 10.4171/RMI/852 | |
dc.identifier.issn | 0213-2230 | |
dc.identifier.officialurl | http://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=31&iss=3&rank=1 | |
dc.identifier.relatedurl | http://arxiv.org/abs/1306.4109v1 | |
dc.identifier.relatedurl | http://www.ems-ph.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/34973 | |
dc.issue.number | 3 | |
dc.journal.title | Revista Matemática Iberoamericana | |
dc.language.iso | eng | |
dc.page.final | 766 | |
dc.page.initial | 753 | |
dc.publisher | Universidad Autónoma Madrid | |
dc.relation.projectID | MTM2011-22435 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Semialgebraic function | |
dc.subject.keyword | bounded semialgebraic function | |
dc.subject.keyword | z-ideal | |
dc.subject.keyword | semialgebraic depth | |
dc.subject.keyword | Krull dimension | |
dc.subject.keyword | local dimension | |
dc.subject.keyword | transcendence degree | |
dc.subject.keyword | real closed ring | |
dc.subject.keyword | real closed field | |
dc.subject.keyword | real closure of a ring | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | On the Krull dimension of rings of continuous semialgebraic functions | |
dc.type | journal article | |
dc.volume.number | 31 | |
dcterms.references | J. Atiyah, I.G. MacDonald: Introduction to Commutative Algebra. Addison–Wesley Publishing Co., Inc., Reading, Mass.-London: 1969. J. Bochnak, M. Coste, M.-F. Roy: Real algebraic geometry. Ergeb. Math. 36, Springer-Verlag, Berlin: 1998. M. Carral, M. Coste: Normal spectral spaces and their dimensions. J. Pure Appl. Algebra 30 (1983), 227-235. G.L. Cherlin, M.A. Dickmann: Real closed rings. I. Residue rings of rings of continuous functions. Fund. Math. 126 (1986), no. 2, 147–183. G.L. Cherlin, M.A. Dickmann: Real closed rings. II. Model theory. Ann. Pure Appl. Logic 25 (1983), no. 3, 213–231. H. Delfs, M. Knebusch: Separation, Retractions and homotopy extension in semialgebraic spaces. Pacific J. Math. 114 (1984), no. 1, 47–71. H. Delfs, M. Knebusch: Locally semialgebraic spaces. Lecture Notes in Mathematics, 1173. SpringerVerlag, Berlin: 1985. J.M. Gamboa: On prime ideals in rings of semialgebraic functions. Proc. Amer. Math. Soc. 118 (1993), no. 4, 1034–1041. J.M. Gamboa, J.M. Ruiz: On rings of semialgebraic functions. Math. Z. 206 (1991) no. 4, 527–532. L. Gillman, M. Jerison: Rings of continuous functions. The Univ. Series in Higher Nathematics 1, D. Van Nostrand Company, Inc.: 1960. A. Prestel, N. Schwartz: Model theory of real closed rings. Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999), 261–290, Fields Inst. Commun., 32, Amer. Math. Soc., Providence, RI, 2002. N. Schwartz: Real closed rings. Habilitationsschrift, München: 1984. N. Schwartz: Real closed rings. Algebra and order (Luminy-Marseille, 1984), 175–194, Res. Exp. Math., 14, Heldermann, Berlin: 1986. N. Schwartz: The basic theory of real closed spaces. Mem. Amer. Math. Soc. 77 (1989), no. 397, viii + 122 pp. N. Schwartz: Rings of continuous functions as real closed rings. Ordered algebraic structures (Cura¸cao, 1995), 277–313, Kluwer Acad. Publ., Dordrecht: 1997. N. Schwartz: Epimorphic extensions and Prüfer extensions of partially ordered rings. Manuscripta Math. 102 (2000), 347-381. N. Schwartz, J.J. Madden: Semi-algebraic function rings and reflectors of partially ordered rings. Lecture Notes in Mathematics, 1712. Springer-Verlag, Berlin: 1999. xii+279 pp. N. Schwartz, M. Tressl: Elementary properties of minimal and maximal points in Zariski spectra. J. Algebra 323 (2010), no. 3, 698–728. M. Tressl: The real spectrum of continuous definable functions in o-minimal structures. S´eminaire de Structures Algébriques Ordonnées 1997-1998, 68, Mars 1999, p. 1-15. M. Tressl: Super real closed rings. Fund. Math. 194 (2007), no. 2, 121–177. M. Tressl: Bounded super real closed rings. Logic Colloquium 2007, 220–237, Lect. Notes Log., 35, Assoc. Symbol. Logic, La Jolla, CA, 2010. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 499732d5-c130-4ea6-8541-c4ec934da408 | |
relation.isAuthorOfPublication | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 | |
relation.isAuthorOfPublication.latestForDiscovery | 499732d5-c130-4ea6-8541-c4ec934da408 |
Download
Original bundle
1 - 1 of 1