Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

On the Krull dimension of rings of continuous semialgebraic functions

Loading...
Thumbnail Image

Full text at PDC

Publication date

2015

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Autónoma Madrid
Citations
Google Scholar

Citation

Abstract

Let R be a real closed field, S(M) the ring of continuous semialgebraic functions on a semialgebraic set M subset of R-m and S* (M) its subring of continuous semialgebraic functions that are bounded with respect to R. In this work we introduce semialgebraic pseudo-compactifications of M and the semialgebraic depth of a prime ideal p of S(M) in order to provide an elementary proof of the finiteness of the Krull dimensions of the rings S(M) and S* (M) for an arbitrary semialgebraic set M. We are inspired by the classical way to compute the dimension of the ring of polynomial functions on a complex algebraic set without involving the sophisticated machinery of real spectra. We show dim(S(M)) = dim(S* (M)) = dim(M) and prove that in both cases the height of a maximal ideal corresponding to a point p is an element of M coincides with the local dimension of M at p. In case p is a prime z-ideal of S(M), its semialgebraic depth coincides with the transcendence degree of the real closed field qf(S(M)/p) over R

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections