Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The combinatorics of plane curve singularities: how Newton polygons blossom into lotuses

dc.book.titleHandbook of Geometry and Topology of Singularities
dc.contributor.authorGarcía Barroso, Evelia R.
dc.contributor.authorGonzález Pérez, Pedro Daniel
dc.contributor.authorPopescu-Pampu, P
dc.date.accessioned2023-06-17T10:12:18Z
dc.date.available2023-06-17T10:12:18Z
dc.date.issued2020
dc.description.abstractThis survey may be seen as an introduction to the use of toric and tropical geometry in the analysis of plane curve singularities, which are germs (C,o) of complex analytic curves contained in a smooth complex analytic surface S. The embedded topological type of such a pair (S,C) is usually defined to be that of the oriented link obtained by intersecting C with a sufficiently small oriented Euclidean sphere centered at the point o, defined once a system of local coordinates (x,y) was chosen on the germ (S,o). If one works more generally over an arbitrary algebraically closed field of characteristic zero, one speaks instead of the combinatorial type of (S,C). One may define it by looking either at the Newton-Puiseux series associated to C relative to a generic local coordinate system (x,y), or at the set of infinitely near points which have to be blown up in order to get the minimal embedded resolution of the germ (C,o) or, thirdly, at the preimage of this germ by the resolution. Each point of view leads to a different encoding of the combinatorial type by a decorated tree: an Eggers-Wall tree, an Enriques diagram, or a weighted dual graph. The three trees contain the same information, which in the complex setting is equivalent to the knowledge of the embedded topological type. There are known algorithms for transforming one tree into another. In this paper we explain how a special type of two-dimensional simplicial complex called a lotus allows to think geometrically about the relations between the three types of trees. Namely, all of them embed in a natural lotus, their numerical decorations appearing as invariants of it. This lotus is constructed from the finite set of Newton polygons created during any process of resolution of (C,o) by successive toric modifications
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipCentro de Excelencia Severo Ochoa
dc.description.sponsorshipAgence nationale de la Recherche of France (ANR)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74818
dc.identifier.doi10.1007/978-3-030-53061-7_1
dc.identifier.isbn978-3-030-53060-0
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-030-53061-7_1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8863
dc.language.isospa
dc.page.total601
dc.publisherSpringer
dc.relation.projectIDMTM2016- 80659-P, MTM2016-76868-C2-1-P
dc.relation.projectIDSEV-2015-0554
dc.relation.projectIDANR-17-CE40- 0023-02 LISA and Labex CEMPI (ANR-11-LABX-0007-01)
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordSingularity theory
dc.subject.keywordTopology of singularities
dc.subject.keywordEquisingularity
dc.subject.keywordLipschitz Geometry
dc.subject.keywordMilnor fibration
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe combinatorics of plane curve singularities: how Newton polygons blossom into lotuses
dc.typebook part
dc.volume.numberI
dspace.entity.typePublication
relation.isAuthorOfPublicationb7087753-f54f-4fdc-ac95-83b1b7fae921
relation.isAuthorOfPublication.latestForDiscoveryb7087753-f54f-4fdc-ac95-83b1b7fae921

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezperez_thecombinatorics.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format