A generalized divergence for statistical inference

Loading...
Thumbnail Image

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Int Statiscal
Citations
Google Scholar

Citation

Abstract

The power divergence (PD) and the density power divergence (DPD) families have proven to be useful tools in the area of robust inference. In this paper, we consider a superfamily of divergences which contains both of these families as special cases. The role of this superfamily is studied in several statistical applications, and desirable properties are identified and discussed. In many cases, it is observed that the most preferred minimum divergence estimator within the above collection lies outside the class of minimum PD or minimum DPD estimators, indicating that this superfamily has real utility, rather than just being a routine generalization. The limitation of the usual first order influence function as an effective descriptor of the robustness of the estimator is also demonstrated in this connection.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections