A generalized divergence for statistical inference

dc.contributor.authorGhosh, A.
dc.contributor.authorHarris, I. R.
dc.contributor.authorMaji, A.
dc.contributor.authorBasu, A.
dc.contributor.authorPardo Llorente, Leandro
dc.date.accessioned2023-06-17T22:02:30Z
dc.date.available2023-06-17T22:02:30Z
dc.date.issued2017
dc.description.abstractThe power divergence (PD) and the density power divergence (DPD) families have proven to be useful tools in the area of robust inference. In this paper, we consider a superfamily of divergences which contains both of these families as special cases. The role of this superfamily is studied in several statistical applications, and desirable properties are identified and discussed. In many cases, it is observed that the most preferred minimum divergence estimator within the above collection lies outside the class of minimum PD or minimum DPD estimators, indicating that this superfamily has real utility, rather than just being a routine generalization. The limitation of the usual first order influence function as an effective descriptor of the robustness of the estimator is also demonstrated in this connection.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/44069
dc.identifier.issn1350-7265
dc.identifier.officialurlhttps://projecteuclid.org/euclid.bj/1494316831
dc.identifier.relatedurlhttps://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17971
dc.issue.number4A
dc.journal.titleBernoulli
dc.language.isoeng
dc.page.final2783
dc.page.initial2746
dc.publisherInt Statiscal
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordBreakdown point
dc.subject.keywordDivergence measure
dc.subject.keywordInfluence function
dc.subject.keywordRobust estimation
dc.subject.keywordS-divergence
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleA generalized divergence for statistical inference
dc.typejournal article
dc.volume.number23
dspace.entity.typePublication
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscoverya6409cba-03ce-4c3b-af08-e673b7b2bf58

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoLeandro58.pdf
Size:
357.17 KB
Format:
Adobe Portable Document Format

Collections