Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Detección de comunidades en redes mediante el uso de medidas borrosas

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2022

Defense date

23/03/2021

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid
Citations
Google Scholar

Citation

Abstract

La manipulación y análisis de grandes volúmenes de datos es un asunto cada vez más relevante en el mundo actual. En el área de la Ciencia y Análisis de Datos, existe una gran cantidad de herramientas desarrolladas para el modelado y resolución de problemas basados en situaciones reales, entre las que cabe destacar las redes complejas o grafos, modelos muy útiles para la representación de conjuntos de unidades o elementos conectados entre sí. Redes neuronales, especies animales que interactúan entre sí, sistemas biológicos y químicos, la World Wide Web y las diferentes redes sociales on line como Facebook, Twitter o LinkedIn, son algunos ejemplos de situaciones comúnmente modeladas mediante redes complejas o grafos. Este tipo de redes tiene ciertas propiedades topológicas y funcionales, y sus elementos suelen presentar patrones de interconexión que están lejos de ser regulares o aleatorios. Esta memoria se ha centrado en el estudio de la estructura de comunidades que suele caracterizar a las redes complejas. El problema relativo a la búsqueda de grupos de elementos altamente conectados en un grafo recibe el nombre de problema de detección de comunidades. Obtener una buena partición del conjunto de nodos, coherente, cohesiva, robusta y con buenas propiedades, simplifica enormemente el proceso de análisis de una red compleja...

Research Projects

Organizational Units

Journal Issue

Description

Tesis inédita de la Universidad Complutense de Madrid, Facultad de Estudios Estadísticos, leída el 23-03-2021

UCM subjects

Unesco subjects

Keywords

Collections