Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Borromean orbifolds: geometry and arithmetic

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1992

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Walter de Gruyter & Co
Citations
Google Scholar

Citation

Abstract

This paper continues earlier work by the authors [see, in particular, H. M. Hilden et al., Invent. Math. 87 (1987), no. 3, 441–456; H. M. Hilden, M. T. Lozano and J. M. Montesinos, in Differential topology (Siegen, 1987), 1–13, Lecture Notes in Math., 1350, Springer, Berlin, 1988;] on universal knots, links and groups, which shows that every closed oriented 3-manifold has the structure of an arithmetic orbifold. Investigating "how rare a flower is an arithmetic orbifold in the garden of hyperbolic orbifolds", the authors produce a three-parameter family B(m,n,p), 3≤m,n,p≤∞, of them with singular set the Borromean rings and show (simultaneously providing an excellent survey on arithmetic hyperbolic groups and orbifolds) that only eleven of its members are arithmetic.

Research Projects

Organizational Units

Journal Issue

Description

Papers from the Research Semester in Low-dimensional Topology held at Ohio State University, Columbus, Ohio, February–June 1990.

Keywords