On the Borromean orbifolds: geometry and arithmetic
dc.book.title | Topology '90. | |
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Lozano Imízcoz, María Teresa | |
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.editor | Apanasov, Boris | |
dc.contributor.editor | Neumann, Walter D. | |
dc.contributor.editor | Reid, Alan W. | |
dc.contributor.editor | Siebenmann, Laurent | |
dc.date.accessioned | 2023-06-20T21:07:29Z | |
dc.date.available | 2023-06-20T21:07:29Z | |
dc.date.issued | 1992 | |
dc.description | Papers from the Research Semester in Low-dimensional Topology held at Ohio State University, Columbus, Ohio, February–June 1990. | |
dc.description.abstract | This paper continues earlier work by the authors [see, in particular, H. M. Hilden et al., Invent. Math. 87 (1987), no. 3, 441–456; H. M. Hilden, M. T. Lozano and J. M. Montesinos, in Differential topology (Siegen, 1987), 1–13, Lecture Notes in Math., 1350, Springer, Berlin, 1988;] on universal knots, links and groups, which shows that every closed oriented 3-manifold has the structure of an arithmetic orbifold. Investigating "how rare a flower is an arithmetic orbifold in the garden of hyperbolic orbifolds", the authors produce a three-parameter family B(m,n,p), 3≤m,n,p≤∞, of them with singular set the Borromean rings and show (simultaneously providing an excellent survey on arithmetic hyperbolic groups and orbifolds) that only eleven of its members are arithmetic. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22138 | |
dc.identifier.isbn | 3-11-012598-6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/60745 | |
dc.issue.number | 1 | |
dc.language.iso | eng | |
dc.page.final | 167 | |
dc.page.initial | 133 | |
dc.page.total | 457 | |
dc.publication.place | Berlin | |
dc.publisher | Walter de Gruyter & Co | |
dc.relation.ispartofseries | Ohio State University Mathematical Research Institute Publications | |
dc.relation.projectID | PB85-0336 | |
dc.relation.projectID | PB89-0105 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.14 | |
dc.subject.keyword | Borromean orbifolds | |
dc.subject.keyword | arithmeticity | |
dc.subject.keyword | singular set | |
dc.subject.keyword | Borromean rings | |
dc.subject.keyword | arithmetic hyperbolic orbifold | |
dc.subject.keyword | hyperbolic structures of the Borromean orbifolds | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.subject.unesco | 1210 Topología | |
dc.title | On the Borromean orbifolds: geometry and arithmetic | |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1