Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Measurement of retardation in digital photoelasticity by load stepping using a sinusoidal least-squares fitting

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorVilla, J.
dc.contributor.authorGómez Pedrero, José Antonio
dc.date.accessioned2023-06-20T10:37:37Z
dc.date.available2023-06-20T10:37:37Z
dc.date.issued2004-01
dc.description© 2002 Elsevier Science. We acknowledge the support of the Consejo Nacional de Ciencia y Tecnología (México) and the Centro de Ingeniería y Desarrollo Industrial (Querétaro, México) for the postdoctoral grant of J. Villa. We also wish to thank the financial support of the European Union, project INDUCE, BRPR-CT97-0805 and Universidad Complutense de Madrid, project PR48/01-9858.
dc.description.abstractThe use of digital photoelasticity permits us to determine the distribution of principal stress difference by means of the analysis of a photoelastic fringe pattern using a phase measurement method. However, conventional phase measurement methods for fringe pattern analysis require the application of an unwrapping process which commonly fails in the presence of discontinuities. To alleviate this problem, load-stepping methods have been developed. We present an alternative load-stepping algorithm that is based on a nonlinear sinusoidal least-squares fitting. The description of this technique together with its verification on simulated and real experiments are presented in this work. © 2002 Elsevier Science Ltd. All rights reserved.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología (México)
dc.description.sponsorshipCentro de Ingeniería y Desarrollo Industrial (Querétaro, México)
dc.description.sponsorshipEuropean Union
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23098
dc.identifier.doi10.1016/S0143-8166(02)00103-3
dc.identifier.issn0143-8166
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0143-8166(02)00103-3
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50819
dc.issue.number1
dc.journal.titleOptics and Lassers in Engineering
dc.language.isoeng
dc.page.final137
dc.page.initial127
dc.publisherElsevier Sci. Ltd.
dc.relation.projectIDINDUCE
dc.relation.projectIDBRPR-CT97-0805
dc.relation.projectIDPR48/01-9858
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordDigital Photoelasticity
dc.subject.keywordRetardation
dc.subject.keywordLoad-Stepping
dc.subject.keywordNon-Linear Sinusoidal Least-Squares Fitting
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleMeasurement of retardation in digital photoelasticity by load stepping using a sinusoidal least-squares fitting
dc.typejournal article
dc.volume.number41
dcterms.references[1] Durelli A, Riley WF. Introduction to photomechanics. Englewood Cliffs, NJ: Prentice-Hall, 1965. [2] Ramesh K. Digital photoelasticity. Berlin, Heidelberg, New York: Springer, 2000. [3] Carazo-Alvarez J, Haake SJ, Patterson EA. Completely automated photoelastic fringe analysis. Opt Laser Eng 1994;21:133–49. [4] Buckberry C, Towers D. Automatic analysis of isochromatic and isoclinic fringes in photoelasticity using phase measuring techniques. Meas Sci Technol 1995;6:1227–35. [5] Asundi A. Phase shifting in photoelasticity. Exp Tech 1993;17:19–23. [6] Quan C, Bryanston-Cross JTR. Photoelasticity stress analysis using carrier fringe and FFT techniques. Opt Laser Eng 1993;18:70–108. [7] Ajovalasit A, Morici S, Zuccarello B. Photoelastic stress analysis using the Fourier transform method: influence of the isoclinic parameter. Proceedings of 15th Symposium ‘‘Danubia-Adria’’ on Experimental Methods in Solid Mechanics, TC15, Bertinoro, Italy, 1998. [8] Ekman MJ, Nurse AD. Absolute determination of the isochromatic parameter by load-stepping photoelasticity. Exp Mech 1998;38:189–95. [9] Asundi A, Liu-Tong, Chai-Gin-Boay. Determination of isoclinic and isochromatic parameters using the three-load method. Meas Sci Technol 2000;11(5):532–7. [10] Tong L, Asundi A, Boay CG. Full field automated photoelasticity using two-load-step method. Opt Eng 2001;40:1629–35.
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication5c5cb6be-771c-40ed-8af0-cdfdbdfb3d36
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA60.pdf
Size:
260.23 KB
Format:
Adobe Portable Document Format

Collections