Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Evaluating genetic algorithms through the approximability hierarchy

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

Optimization problems frequently appear in any scientific domain. Most of the times, the corresponding decision problem turns out to be NP-hard, and in these cases genetic algorithms are often used to obtain approximated solutions. However, the difficulty to approximate different NP-hard problems can vary a lot. In this paper, we analyze the usefulness of using genetic algorithms depending on the approximation class the problem belongs to. In particular, we use the standard approximability hierarchy, showing that genetic algorithms are especially useful for the most pessimistic classes of the hierarchy.

Research Projects

Organizational Units

Journal Issue

Description

CRUE-CSIC (Acuerdos Transformativos 2021)

Keywords

Collections