Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Evaluating genetic algorithms through the approximability hierarchy

dc.contributor.authorMuñoz, Alba
dc.contributor.authorRubio Díez, Fernando
dc.date.accessioned2023-06-17T08:22:02Z
dc.date.available2023-06-17T08:22:02Z
dc.date.issued2021-05-12
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2021)
dc.description.abstractOptimization problems frequently appear in any scientific domain. Most of the times, the corresponding decision problem turns out to be NP-hard, and in these cases genetic algorithms are often used to obtain approximated solutions. However, the difficulty to approximate different NP-hard problems can vary a lot. In this paper, we analyze the usefulness of using genetic algorithms depending on the approximation class the problem belongs to. In particular, we use the standard approximability hierarchy, showing that genetic algorithms are especially useful for the most pessimistic classes of the hierarchy.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70335
dc.identifier.doi10.1016/j.jocs.2021.101388
dc.identifier.issn1877-7503
dc.identifier.officialurlhttps://doi.org/10.1016/j.jocs.2021.101388
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6785
dc.journal.titleJournal of Computational Science
dc.language.isoeng
dc.page.initial101388
dc.publisherElsevier
dc.relation.projectIDTIN2015-67522-C3-3-R, PID2019-108528RB-C22
dc.relation.projectIDBLOQUES-CM (S2018/TCS-4339)
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.keywordHeuristic methods
dc.subject.keywordGenetic algorithms
dc.subject.keywordComplexity
dc.subject.keywordApproximability
dc.subject.ucmInformática (Informática)
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleEvaluating genetic algorithms through the approximability hierarchy
dc.typejournal article
dc.volume.number53
dspace.entity.typePublication
relation.isAuthorOfPublication24d04c3b-f9e3-4ad0-95cb-c28e064f7a03
relation.isAuthorOfPublication.latestForDiscovery24d04c3b-f9e3-4ad0-95cb-c28e064f7a03

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1877750321000764-main.pdf
Size:
818.12 KB
Format:
Adobe Portable Document Format

Collections