Evaluating genetic algorithms through the approximability hierarchy
dc.contributor.author | Muñoz, Alba | |
dc.contributor.author | Rubio Díez, Fernando | |
dc.date.accessioned | 2023-06-17T08:22:02Z | |
dc.date.available | 2023-06-17T08:22:02Z | |
dc.date.issued | 2021-05-12 | |
dc.description | CRUE-CSIC (Acuerdos Transformativos 2021) | |
dc.description.abstract | Optimization problems frequently appear in any scientific domain. Most of the times, the corresponding decision problem turns out to be NP-hard, and in these cases genetic algorithms are often used to obtain approximated solutions. However, the difficulty to approximate different NP-hard problems can vary a lot. In this paper, we analyze the usefulness of using genetic algorithms depending on the approximation class the problem belongs to. In particular, we use the standard approximability hierarchy, showing that genetic algorithms are especially useful for the most pessimistic classes of the hierarchy. | |
dc.description.department | Depto. de Sistemas Informáticos y Computación | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Comunidad de Madrid/FEDER | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/70335 | |
dc.identifier.doi | 10.1016/j.jocs.2021.101388 | |
dc.identifier.issn | 1877-7503 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.jocs.2021.101388 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/6785 | |
dc.journal.title | Journal of Computational Science | |
dc.language.iso | eng | |
dc.page.initial | 101388 | |
dc.publisher | Elsevier | |
dc.relation.projectID | TIN2015-67522-C3-3-R, PID2019-108528RB-C22 | |
dc.relation.projectID | BLOQUES-CM (S2018/TCS-4339) | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.subject.keyword | Heuristic methods | |
dc.subject.keyword | Genetic algorithms | |
dc.subject.keyword | Complexity | |
dc.subject.keyword | Approximability | |
dc.subject.ucm | Informática (Informática) | |
dc.subject.ucm | Programación de ordenadores (Informática) | |
dc.subject.unesco | 1203.17 Informática | |
dc.subject.unesco | 1203.23 Lenguajes de Programación | |
dc.title | Evaluating genetic algorithms through the approximability hierarchy | |
dc.type | journal article | |
dc.volume.number | 53 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 24d04c3b-f9e3-4ad0-95cb-c28e064f7a03 | |
relation.isAuthorOfPublication.latestForDiscovery | 24d04c3b-f9e3-4ad0-95cb-c28e064f7a03 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S1877750321000764-main.pdf
- Size:
- 818.12 KB
- Format:
- Adobe Portable Document Format