A new algebraization of the Lame equation
dc.contributor.author | Finkel Morgenstern, Federico | |
dc.contributor.author | González López, Artemio | |
dc.contributor.author | Rodríguez González, Miguel Ángel | |
dc.date.accessioned | 2023-06-20T20:09:51Z | |
dc.date.available | 2023-06-20T20:09:51Z | |
dc.date.issued | 2000-03-03 | |
dc.description | © 2000 IOP Publishing Ltd. Supported in part by DGES Grant PB98-0821. | |
dc.description.abstract | We develop a new way of writing the Lame Hamiltonian in Lie-algebraic form. This yields, in a natural way, an explicit formula for both the Lame polynomials and the classical non-meromorphic Lame functions in terms of Chebyshev polynomials and of a certain family of weakly orthogonal polynomials. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGES | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/32750 | |
dc.identifier.doi | 10.1088/0305-4470/33/8/303 | |
dc.identifier.issn | 0305-4470 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0305-4470/33/8/303 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/math-ph/9908002 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59720 | |
dc.issue.number | 8 | |
dc.journal.title | Journal of physics A: Mathematical and general | |
dc.language.iso | eng | |
dc.page.final | 1542 | |
dc.page.initial | 1519 | |
dc.publisher | IOP Publishing | |
dc.relation.projectID | PB98-0821 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | A new algebraization of the Lame equation | |
dc.type | journal article | |
dc.volume.number | 33 | |
dcterms.references | [1] Ince E L 1939–40 Proc. R. Soc. Edin. 60 47–63 [2] Ince E L 1939–40 Proc. R. Soc. Edin. 60 83–99 [3] Erdélyi A, Magnus W, Oberhettinger F and Tricomi F G 1955 Higher Transcendental Functions vol III (New York: Mc-Graw Hill) [4] Arscott F M 1964 Periodic Differential Equations (Oxford: Pergamon) [5] Alhassid Y, Gürsey F and Iachello F 1983 Phys. Rev. Lett. 50 873–6 [6] Braibant S and Brihaye Y 1993 J. Math. Phys. 34 2107–14 [7] Kofman L, Linde A and Starobinsky A A 1994 Phys. Rev. Lett. 73 3195–8 [8] Greene P B, Kofman L, Linde A and Starobinsky A A 1997 Phys. Rev. D 56 6175–92 [9] Turbiner A V 1989 J. Phys. A: Math. Gen. 22 L1–3 [10] González-López A, Kamran N and Olver P J 1994 Contemp. Math. 160 113–40 [11] Ushveridze A G 1994 Quasi-Exactly Solvable Models in Quantum Mechanics (Bristol: IOP Publishing) [12] Olver P J 1997 GROUP21: Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras ed H-D Doebner et al (Singapore: World Scientific) pp 285–95 [13] Razavy M 1980 Am. J. Phys. 48 285–8 [14] Finkel F, Gonzalez-López A and Rodríguez M A 1999 J. Phys. A: Math. Gen. 32 6821–35 [15] Ward R S 1987 J. Phys. A: Math. Gen. 20 2679–83 [16] Ulyanov V V and Zaslavskii O B 1992 Phys. Rep. 216 180–251 [17] Brihaye Y and Godart M 1993 J. Math. Phys. 34 5283–91 [18] Finkel F, Gonzalez-López A and Rodríguez M A 1996 J. Math. Phys. 37 3954–72 [19] Turbiner A V 1988 Commun. Math. Phys. 118 467–74 [20] González-López A, Kamran N and Olver P J 1993 Commun. Math. Phys. 153 117–46 [21] Turbiner A V 1992 J. Phys. A: Math. Gen. 25 L1087–93 [22] Finkel F and Kamran N 1998 Adv. Appl. Math. 20 300–22 [23] Turbiner A V and Ushveridze A G 1987 Phys. Lett. A 126 181–3 [24] Bender C M and Dunne G V 1996 J. Math. Phys. 37 6–11 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 207092a4-0443-4336-a037-15936f8acc25 | |
relation.isAuthorOfPublication | 7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc | |
relation.isAuthorOfPublication | d781a665-7ef6-44e0-a0da-81f722f1b8ad | |
relation.isAuthorOfPublication.latestForDiscovery | 207092a4-0443-4336-a037-15936f8acc25 |
Download
Original bundle
1 - 1 of 1