Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sums of two squares in analytic rings

Loading...
Thumbnail Image

Full text at PDC

Publication date

1999

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

We study analytic singularities for which every positive semidefinite analytic function is a sum of two squares of analytic functions. This is a basic useful property of the plane, but difficult to check in other cases; in particular, what about z(2)=xy, z(2)=yx(2)-y(3), z(2)=x(3)+y(4) or z(2)=x(3)-xy(3)? In fact, the unique positive examples we can find are the Brieskorn singularity, the union of two planes in 3-space and the Whitney umbrella. Conversely we prove that a complete intersection with that property (other than the seven embedded surfaces already mentioned) must be a very simple deformation of the two latter, namely, z(2)=x(2)+(-1)(k)y(k), k≥3, or z(2)=yx(2)+(-1)(k)y(k), k≥4. In particular, except for the stems z(2)=x(2) and z(2)=yx(2), all singularities are real rational double points.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections