Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sums of two squares in analytic rings

dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T17:11:39Z
dc.date.available2023-06-20T17:11:39Z
dc.date.issued1999-02
dc.description.abstractWe study analytic singularities for which every positive semidefinite analytic function is a sum of two squares of analytic functions. This is a basic useful property of the plane, but difficult to check in other cases; in particular, what about z(2)=xy, z(2)=yx(2)-y(3), z(2)=x(3)+y(4) or z(2)=x(3)-xy(3)? In fact, the unique positive examples we can find are the Brieskorn singularity, the union of two planes in 3-space and the Whitney umbrella. Conversely we prove that a complete intersection with that property (other than the seven embedded surfaces already mentioned) must be a very simple deformation of the two latter, namely, z(2)=x(2)+(-1)(k)y(k), k≥3, or z(2)=yx(2)+(-1)(k)y(k), k≥4. In particular, except for the stems z(2)=x(2) and z(2)=yx(2), all singularities are real rational double points.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19994
dc.identifier.doi10.1007/PL00004692
dc.identifier.issn0025-5874
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2FPL00004692
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57922
dc.issue.number2
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.final328
dc.page.initial317
dc.publisherSpringer
dc.relation.projectIDPB95-0354
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.cdu510.22
dc.subject.cdu514.12
dc.subject.cdu515.171.5
dc.subject.keywordSums of two squares
dc.subject.keywordanalytic rings
dc.subject.keywordBrieskorn singularity
dc.subject.keywordcomplete intersecton
dc.subject.ucmGeometria algebraica
dc.subject.ucmTeoría de conjuntos
dc.subject.unesco1201.01 Geometría Algebraica
dc.subject.unesco1201.02 Teoría Axiomática de Conjuntos
dc.titleSums of two squares in analytic rings
dc.typejournal article
dc.volume.number230
dcterms.referencesC. Andradas, L. Bröcker, J.M. Ruiz: Constructible sets in real geometry. Ergeb. Math. 33, Springer Verlag, Berlin Heidelberg New York 1996. J. Bochnak, J.-J. Risler: Le théorème des zéros pour les variétés analytiques réelles de dimension 2. Ann. Sc. Ec. Norm. Sup. Paris 8, 343–364(1975). J. Bochnak, W.Kucharz, M. Shiota: On equivalence of ideals of real global analytic functions and Hilbert’s 17th Problem. Invent. Math. 66, 403–421(1981). M.D. Choi, Z.D. Dai, T.Y.Lam, B. Reznick: The Pythagoras number of some affine algebras and local algebras. J. reine Angew. Math. 336, 45–82(1982). A.H. Durfee: Four characterizations of real rational double points. In Noeuds, tresses et singularités, Monographies de l’Enseignement Mathematique 31, 123–128 (1983). J. Margalef, E. Outerelo: Singularidades de aplicaciones diferenciables, Varicop, Madrid 1978. J.-J. Risler: Le théoréme des zéros en géométries algébrique et analytique réelle. Bull. Soc. Math. France 104, 113–127(1976). J.M. Ruiz: Aspectos aritméticos y geométricos del problema decimoséptimo de Hilbert para gérmenes analíticos. Ph.D. Thesis, Univ. Complutense de Madrid 1983.
dspace.entity.typePublication
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscoveryf12f8d97-65c7-46aa-ad47-2b7099b37aa4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RuizSancho10.pdf
Size:
111.08 KB
Format:
Adobe Portable Document Format

Collections