Sums of two squares in analytic rings
dc.contributor.author | Ruiz Sancho, Jesús María | |
dc.date.accessioned | 2023-06-20T17:11:39Z | |
dc.date.available | 2023-06-20T17:11:39Z | |
dc.date.issued | 1999-02 | |
dc.description.abstract | We study analytic singularities for which every positive semidefinite analytic function is a sum of two squares of analytic functions. This is a basic useful property of the plane, but difficult to check in other cases; in particular, what about z(2)=xy, z(2)=yx(2)-y(3), z(2)=x(3)+y(4) or z(2)=x(3)-xy(3)? In fact, the unique positive examples we can find are the Brieskorn singularity, the union of two planes in 3-space and the Whitney umbrella. Conversely we prove that a complete intersection with that property (other than the seven embedded surfaces already mentioned) must be a very simple deformation of the two latter, namely, z(2)=x(2)+(-1)(k)y(k), k≥3, or z(2)=yx(2)+(-1)(k)y(k), k≥4. In particular, except for the stems z(2)=x(2) and z(2)=yx(2), all singularities are real rational double points. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/19994 | |
dc.identifier.doi | 10.1007/PL00004692 | |
dc.identifier.issn | 0025-5874 | |
dc.identifier.officialurl | http://link.springer.com/content/pdf/10.1007%2FPL00004692 | |
dc.identifier.relatedurl | http://link.springer.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57922 | |
dc.issue.number | 2 | |
dc.journal.title | Mathematische Zeitschrift | |
dc.language.iso | eng | |
dc.page.final | 328 | |
dc.page.initial | 317 | |
dc.publisher | Springer | |
dc.relation.projectID | PB95-0354 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.cdu | 510.22 | |
dc.subject.cdu | 514.12 | |
dc.subject.cdu | 515.171.5 | |
dc.subject.keyword | Sums of two squares | |
dc.subject.keyword | analytic rings | |
dc.subject.keyword | Brieskorn singularity | |
dc.subject.keyword | complete intersecton | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.ucm | Teoría de conjuntos | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.subject.unesco | 1201.02 Teoría Axiomática de Conjuntos | |
dc.title | Sums of two squares in analytic rings | |
dc.type | journal article | |
dc.volume.number | 230 | |
dcterms.references | C. Andradas, L. Bröcker, J.M. Ruiz: Constructible sets in real geometry. Ergeb. Math. 33, Springer Verlag, Berlin Heidelberg New York 1996. J. Bochnak, J.-J. Risler: Le théorème des zéros pour les variétés analytiques réelles de dimension 2. Ann. Sc. Ec. Norm. Sup. Paris 8, 343–364(1975). J. Bochnak, W.Kucharz, M. Shiota: On equivalence of ideals of real global analytic functions and Hilbert’s 17th Problem. Invent. Math. 66, 403–421(1981). M.D. Choi, Z.D. Dai, T.Y.Lam, B. Reznick: The Pythagoras number of some affine algebras and local algebras. J. reine Angew. Math. 336, 45–82(1982). A.H. Durfee: Four characterizations of real rational double points. In Noeuds, tresses et singularités, Monographies de l’Enseignement Mathematique 31, 123–128 (1983). J. Margalef, E. Outerelo: Singularidades de aplicaciones diferenciables, Varicop, Madrid 1978. J.-J. Risler: Le théoréme des zéros en géométries algébrique et analytique réelle. Bull. Soc. Math. France 104, 113–127(1976). J.M. Ruiz: Aspectos aritméticos y geométricos del problema decimoséptimo de Hilbert para gérmenes analíticos. Ph.D. Thesis, Univ. Complutense de Madrid 1983. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 | |
relation.isAuthorOfPublication.latestForDiscovery | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 |
Download
Original bundle
1 - 1 of 1