Stability index of closed semianalytic set germs.
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.contributor.author | Andradas Heranz, Carlos | |
dc.date.accessioned | 2023-06-20T16:49:44Z | |
dc.date.available | 2023-06-20T16:49:44Z | |
dc.date.issued | 1998 | |
dc.description.abstract | Let X0 be an irreducible set germ at the origin 0 2 Rn, and let O(X0) denote the ring of analytic function germs at X0. A basic closed semianalytic germ of X0 is a set germ of the form S0 = {g1 0, · · · , gs 0} X0 where gi 2 O(X0). The integer s(X0) is the minimum of all s 2 Z such that any basic closed semianalytic set germ ofX0 can be written with s elements of O(X0), the integer s(d) is the maximum of s(X0) for all d-dimensional analytic germsX0. In [C. Andradas, L. Br¨ocker and J. M. Ruiz, Constructible sets in real geometry, Springer, Berlin, 1996; MR1393194 (98e:14056)] it is shown that 12 d(d+1)−1 s(X0) 12 d(d+1), where d = dimX0, but, unlike the semialgebraic case, where it is known that s(X) = 12 d(d+1) for any d-dimensional algebraic variety X, it was still open whether for semianalytic germs this is also true. The authors prove that s(X0) = 2 for any two-dimensional normal analytic germ, and provide examples of surface germ with s = 3. Pulling these examples to higher dimension they show that s(d) = 12 d(d+1) for d > 2, so that they obtain the same bound as in the semialgebraic case. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGES | |
dc.description.sponsorship | Fundación del Amo | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14806 | |
dc.identifier.doi | 10.1007/PL00004680 | |
dc.identifier.issn | 0025-5874 | |
dc.identifier.officialurl | http://www.springerlink.com/content/100443/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57158 | |
dc.issue.number | 4 | |
dc.journal.title | Mathematische Zeitschrift | |
dc.language.iso | eng | |
dc.page.final | 751 | |
dc.page.initial | 743 | |
dc.publisher | Springer | |
dc.relation.projectID | PB95-0354 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | stability index | |
dc.subject.keyword | semianalytic set germs | |
dc.subject.keyword | normal analytic set germs | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Stability index of closed semianalytic set germs. | |
dc.type | journal article | |
dc.volume.number | 229 | |
dcterms.references | Andradas, C., Br¨ocker, L., Ruiz, J.: Constructible sets in Real Geometry (Ergeb.der Math. 33, 3. folge) Berlin Heidelberg New York: Springer 1996. Bochnak, J., Coste, M., Roy, M.F.:G´eom´etrie Alg´ebriqueR´eelle (Ergeb. der Math. 12, 3. folge) Berlin Heidelberg New York: Springer 1987. Br¨ocker, L.: On basic semialgebraic sets. Expo. Math. 9, 289-334 (1991). D´ıaz-Cano, A.: Ph.D. dissertation. In preparation, U.C.M. Gunning, R., Rossi, H.: Analytic functions of several complex variables. New-Jersey: Prentice-Hall 1965. Ruiz, J.: The basic theory of power series (Advanced Lectures in Mathematics): Vieweg 1993. Ruiz, J.: A note on a separation problem. Arch. Math. 43, 422-426 (1984). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication | a74c23fe-4059-4e73-806b-71967e14ab67 | |
relation.isAuthorOfPublication.latestForDiscovery | 134ad262-ecde-4097-bca7-ddaead91ce52 |
Download
Original bundle
1 - 1 of 1