Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stability index of closed semianalytic set germs.

dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.contributor.authorAndradas Heranz, Carlos
dc.date.accessioned2023-06-20T16:49:44Z
dc.date.available2023-06-20T16:49:44Z
dc.date.issued1998
dc.description.abstractLet X0 be an irreducible set germ at the origin 0 2 Rn, and let O(X0) denote the ring of analytic function germs at X0. A basic closed semianalytic germ of X0 is a set germ of the form S0 = {g1 0, · · · , gs 0} X0 where gi 2 O(X0). The integer s(X0) is the minimum of all s 2 Z such that any basic closed semianalytic set germ ofX0 can be written with s elements of O(X0), the integer s(d) is the maximum of s(X0) for all d-dimensional analytic germsX0. In [C. Andradas, L. Br¨ocker and J. M. Ruiz, Constructible sets in real geometry, Springer, Berlin, 1996; MR1393194 (98e:14056)] it is shown that 12 d(d+1)−1 s(X0) 12 d(d+1), where d = dimX0, but, unlike the semialgebraic case, where it is known that s(X) = 12 d(d+1) for any d-dimensional algebraic variety X, it was still open whether for semianalytic germs this is also true. The authors prove that s(X0) = 2 for any two-dimensional normal analytic germ, and provide examples of surface germ with s = 3. Pulling these examples to higher dimension they show that s(d) = 12 d(d+1) for d > 2, so that they obtain the same bound as in the semialgebraic case.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipFundación del Amo
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14806
dc.identifier.doi10.1007/PL00004680
dc.identifier.issn0025-5874
dc.identifier.officialurlhttp://www.springerlink.com/content/100443/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57158
dc.issue.number4
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.final751
dc.page.initial743
dc.publisherSpringer
dc.relation.projectIDPB95-0354
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordstability index
dc.subject.keywordsemianalytic set germs
dc.subject.keywordnormal analytic set germs
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleStability index of closed semianalytic set germs.
dc.typejournal article
dc.volume.number229
dcterms.referencesAndradas, C., Br¨ocker, L., Ruiz, J.: Constructible sets in Real Geometry (Ergeb.der Math. 33, 3. folge) Berlin Heidelberg New York: Springer 1996. Bochnak, J., Coste, M., Roy, M.F.:G´eom´etrie Alg´ebriqueR´eelle (Ergeb. der Math. 12, 3. folge) Berlin Heidelberg New York: Springer 1987. Br¨ocker, L.: On basic semialgebraic sets. Expo. Math. 9, 289-334 (1991). D´ıaz-Cano, A.: Ph.D. dissertation. In preparation, U.C.M. Gunning, R., Rossi, H.: Analytic functions of several complex variables. New-Jersey: Prentice-Hall 1965. Ruiz, J.: The basic theory of power series (Advanced Lectures in Mathematics): Vieweg 1993. Ruiz, J.: A note on a separation problem. Arch. Math. 43, 422-426 (1984).
dspace.entity.typePublication
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication.latestForDiscovery134ad262-ecde-4097-bca7-ddaead91ce52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12.pdf
Size:
136.6 KB
Format:
Adobe Portable Document Format

Collections