Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stability index of closed semianalytic set germs.

Loading...
Thumbnail Image

Full text at PDC

Publication date

1998

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

Let X0 be an irreducible set germ at the origin 0 2 Rn, and let O(X0) denote the ring of analytic function germs at X0. A basic closed semianalytic germ of X0 is a set germ of the form S0 = {g1 0, · · · , gs 0} X0 where gi 2 O(X0). The integer s(X0) is the minimum of all s 2 Z such that any basic closed semianalytic set germ ofX0 can be written with s elements of O(X0), the integer s(d) is the maximum of s(X0) for all d-dimensional analytic germsX0. In [C. Andradas, L. Br¨ocker and J. M. Ruiz, Constructible sets in real geometry, Springer, Berlin, 1996; MR1393194 (98e:14056)] it is shown that 12 d(d+1)−1 s(X0) 12 d(d+1), where d = dimX0, but, unlike the semialgebraic case, where it is known that s(X) = 12 d(d+1) for any d-dimensional algebraic variety X, it was still open whether for semianalytic germs this is also true. The authors prove that s(X0) = 2 for any two-dimensional normal analytic germ, and provide examples of surface germ with s = 3. Pulling these examples to higher dimension they show that s(d) = 12 d(d+1) for d > 2, so that they obtain the same bound as in the semialgebraic case.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections